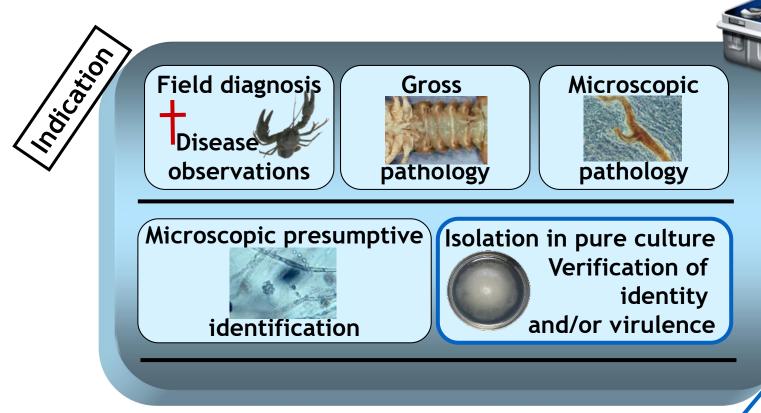

Update on the development of a qPCR assay that discriminate A. astaci from A. fennicus

Aphanomyces astaci specific qPCR?

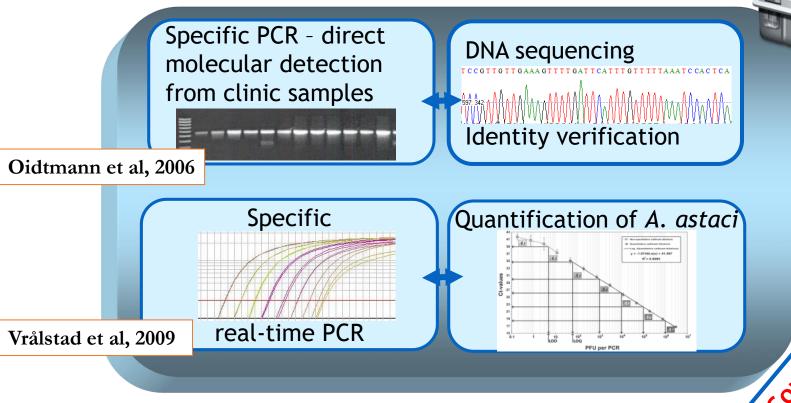
Trude Vrålstad

Head of Fish Health Research Group


10th AW of the NRL for Crustacean Diseases – May 29th 2019

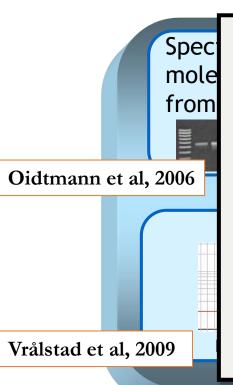
Before 2006 ish: Problems to diagnose the crayfish plague

The ancient toolbox for crayfish plague diagnostics


Very low success rate in most diagnostic laboratories......

From 2006 ish: Developing new tools to diagnose the crayfish plague

The molecular toolbox for crayfish plague diagnostics (OiE recommended)

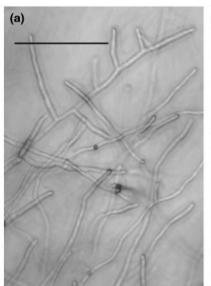

High success rate in most diagnostic laboratories......

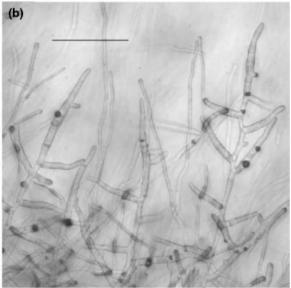
From 2006 ish: Developing new tools to diagnose the crayfish plague

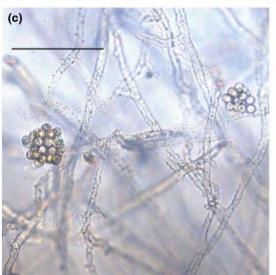
The molecular toolbox for crayfish plague diagnostics (OiE recommended)

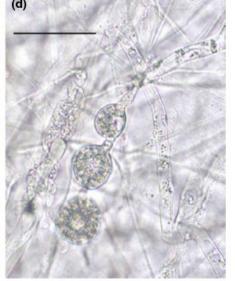
Table 5.2. Methods for targeted surveillance in highly susceptible crayfish species
to declare freedom from infection with A. astaci

Method	Screening method	Confirmatory method				
Inspection for gross signs and mortality	a	С				
Microscopic signs (wet mounts)	С	С				
Isolation and culture	С	b				
Histopathology	d	d				
PCR	a	b, possibly a ¹				
qPCR	a	b, possibly a ¹				
Sequencing of PCR products	n/a	a				
Transmission EM	n/a	n/a				
Antibody-based assays	n/a	n/a				
In situ DNA probes	n/a	n/a				


PCR = polymerase chain reaction; qPCR = quantitative PCR; EM = electron microscopy; n/a = not applicable or not available;


High success rate in most diagnostic laboratories......





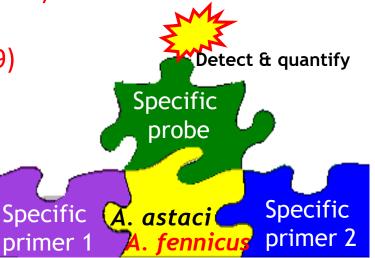
^{1 =} see definitions of confirmed case in Section 7.1

Aphanomyces fennicus sp.nov

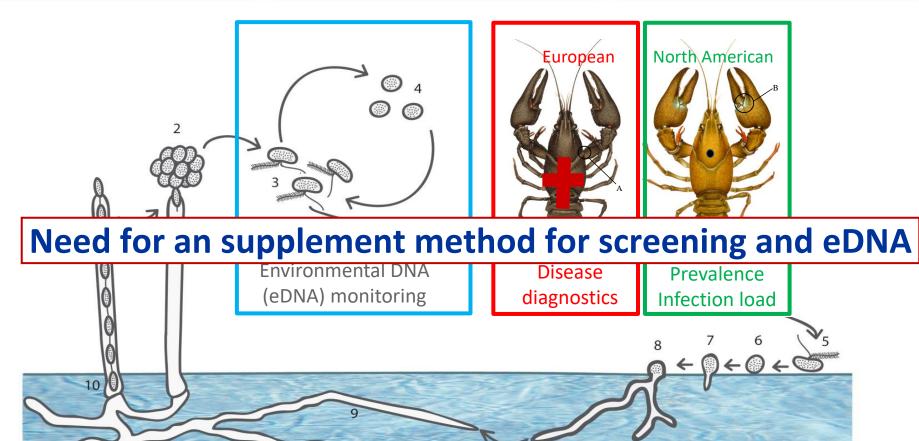
A new species very closely related to *A. astaci* (Viljamaa-Dirks & Heinikainen, 2019)

FIGURE 1 Morphological features of the isolates of novel *Aphanomyces fennicus* sp. nov.: (a) hyphae, (b) hyphal enlargements, (c) spore balls, (d) chlamydospore-like structures. (a and c) are similar to *Aphanomyces astaci*, (b) is rarely, and (d) almost never seen in A. *astaci* cultures. Scale bar: (a and b) 200 μm, (c) 100 μm, (d) 50 μm [Colour figure can be viewed at wileyonlinelibrary. com]

Facts and challenges


- Aphanomyces fennicus sp. nov.
- Isolated from Noble crayfish in Finland
- Distinguished from A. astaci morphologically
- A-virulent, no mortality observed
- Slighly different ITS-sequence
- Unique RAPD-genotype & microsat-genotype
- Not distinguished from A. astaci by the current PCR/qPCRs
 - ITS conventional PCR (Oidtman et al, 2006)
 - ITS- qPCR (Vrålstad et al. 2009)
 - Chitinase qPCR (Hochwimmer et al. 2009)

Viljamaa-Dirks & Heinikainen, 2019

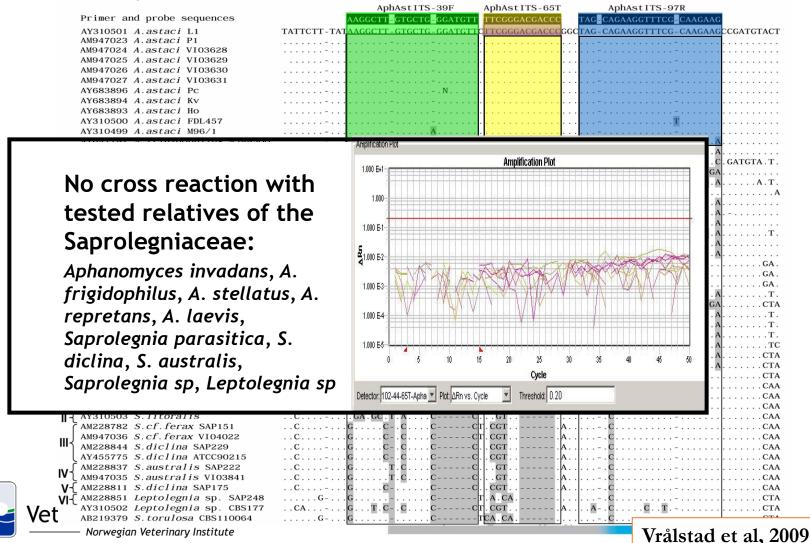


ITS-qPCR used for diagnostics and eDNA monitoring

Motivation for ITS nrDNA as target region for a new qPCR

- Each nucleus in cells of A. astaci contains >100 copies (high sensitivity and likelihood of detection)
- Bar-code region (along with Cox 1 & 2 mtDNA)
- High number of (relevant) oomycete taxa sequenced
- Easy to play alternative assays within the previous region of choice (= most variable part of the ITS-regions for Saprolegniaceae)
- According to the control of the cont

Low-cost alternative

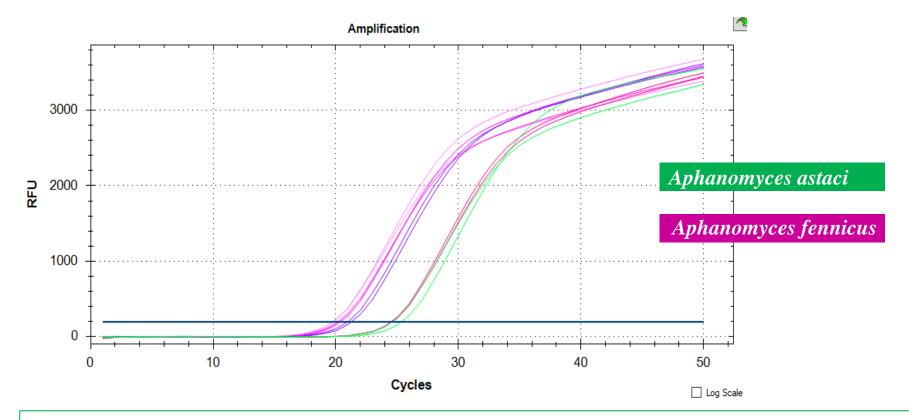

COX2 (and other promising regions) should also be considered

One nucleus contains ~ 140 detectable copies (PFU) of the unique DNA target motif

TaqMan® MGB Real-time PCR assay for detection of *A. astaci*

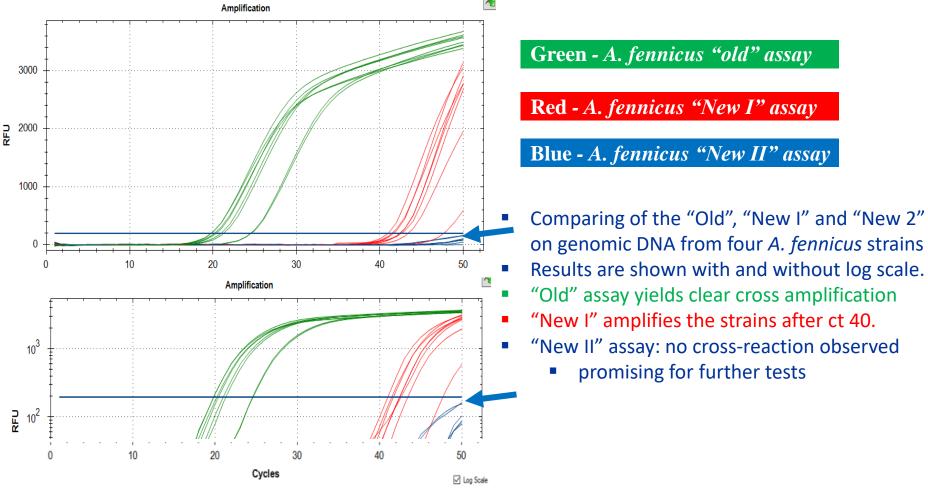
A. astaci and A. fennicus - identical probe region

TABLE 2 The ITS segments used for the real-time PCR (Vrålstad et al., 2009) probe and primers and for the diagnostic PCR protocols (Oidtmann et al., 2006, 2004) in comparison with the gene segments of the *Aphanomyces fennicus* sp. nov. isolates M6/1, M6/2 and M7/3

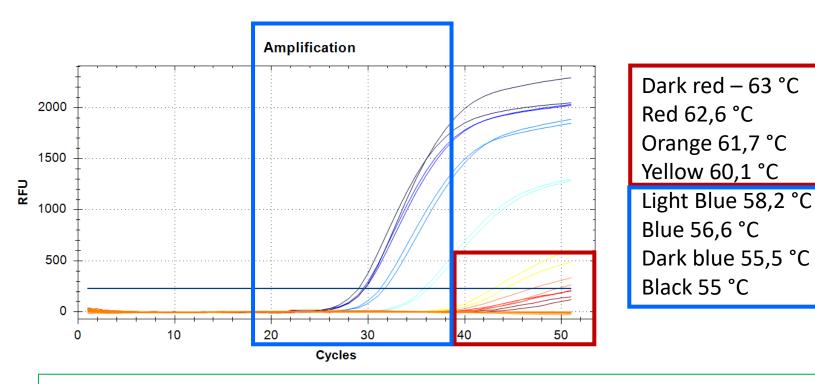

		Primer AphAstITS-39F								Probe AphAstITS-60T				Primer AphAstITS-97R									
Aphanomyces astaci	s tta	t AA	G GC	T TG	T GC	T GG(G ATG	TT	c T	rc gg	G ACG	G ACC	: с	ggc	TA	GCA	GAA	GGT	TTO	C GC/	A AG	A AG	ccg
M6/1							· C ·															·A	
M6/2							٠А٠															·A	
M7/3							٠А٠															٠Α	
Primer BO42							Prim	Primer BO525							Primer B								
A. astaci	GCT	TGT	GCT	GAG	GAT	GTT	CTT	//	AAG	AAG	GCT	AAA	TTG	CGG	TA	//	CAG	AAT	GCG	GAG	TCG	GAT-AG	AG
M6/1					\cdots C			//	٠G٠		٠А٠	$G\cdots$				//					·T·		
M6/2					$\cdots A$			//	٠G٠		• А •	G··				//					$\cdotT\cdot$		
M7/3					$\cdots A$			//	٠G٠		٠А٠	$G\cdots$				//			٠٠R		$\cdot T \cdot -$		

Note. Differences are highlighted in bold. R: G or A (consistent polymorphism analysed in two separate sequences).

Viljamaa-Dirks & Heinikainen, 2019



- Amplification of *A. fennicus* (M6/1, M6/2, M7/3, Matti 17/3: different shades of purple) and *A. astaci* (VIO3628: green) using Vrålstad et al. (2009) (with 62 °C)
- No difference in amplification efficiency clear false positive

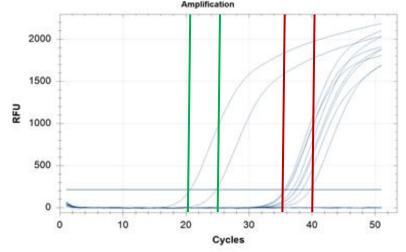

Test of the old and two new candidate assays for specific detection of *A. astaci*

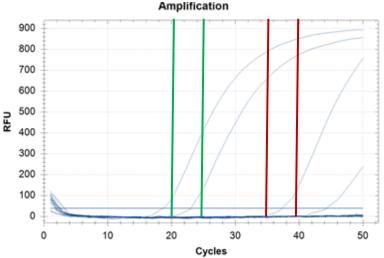
Optimal temperature for the "NEW II" 62.6 °C for discrimination of *A. fennicus*



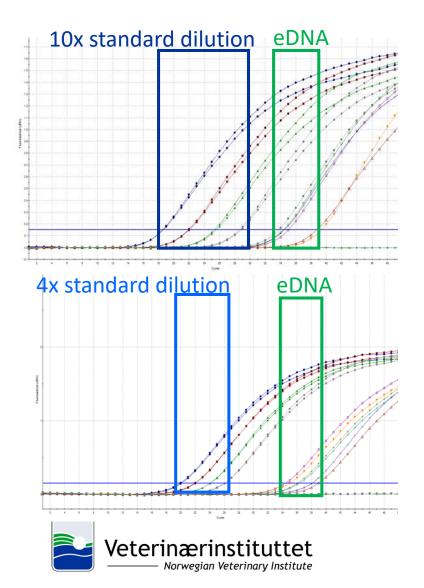
- Gradient qPCR (55-63 °C) using the "New II" assay.
- A. fennicus not amplified at 60 °C and above while amply at 58 °C and below.
- Only tested for Taqman Environmental mastermix (EMM).

"NEW II" test for *A. fennicus* and *A. astaci* - Choice of master mix matters




- Gradient qPCR (at 62.6 °C) using using both mastermixes
- A. fennicus is amplified (weak amplification) using iTaq but not EMM

Test in Finland: Better sensitivity with the "old" assay?



- Sensitivity old and "new 2" compared for pure culture DNA samples and infected tissue samples
- Same performance for pure culture
- Loose most of the low level positives in tissue samples (iTaq and EMM)
- Low level positives not possible to sequence, cultures almost never obtained.
- Can this be A. fennicus?

Test in Norway: Apparently same performance on environmental samples

- Sensitivity old and "new 2" compared for environmental samples (confirmed A. astaci)
- Comparable results for eDNA samples
- Ct in the range from 33-39

Summary

- Promising results although problematic that different mastermixes yields different specificity
- Validation work remains tested against far less species than the "old" assay
- For now best to use as a second verification for positive samples with the "old" assay
 - Broad specificity better tested for the old than the new
- Publication remains...
- Interested to test or contribute? Send us a request – we share!

Acknowledgements

TARGET (NFR-293407)

Norwegian Veterinary Institute

Veterinærinstituttet

Finnish Food Safety EVIRA, Finland

- Co-authors and collaborators
 - David Strand, Elin Rolén, NVI

Satu Viljamaa-Dirks and Sirpa Heinikainen, EVIRA Finland

