The nephrocomplex (formerly known as 'antennal gland'), the golden gate for pathogens & central engine for the molting process

Hans Nauwynck

The shrimp nephrocomplex serves as a major portal of pathogen entry and is involved in the molting process Gaëtan De Gryse & Thuong Van Khuong, Benedicte Descamps, Wim Van Den Broeck, Christian Vanhove, Pieter Cornillie, Patrick Sorgeloos, Peter Bossier and Hans Nauwynck https://doi.org/10.1073/pnas.2013518117

Compared to the intramuscular route,

- only 56 times more virus is needed to infect shrimp via the intra-antennal gland inoculation
- 28,800,000 more virus is needed to infect shrimp via peroral inoculation

Compared to the intramuscular route,

• only 62 times more *V. Campbellii* is required to kill shrimp via the intra-antennal gland inoculation

• no mortality with 10⁹ V. Campbellii via peroral route

The cuticle & peritrophic membrane form a firm barier against pathogens, even during molting

Q: Is there a place where there is no cuticle & close to the hemolymph? A: Yes, 'antennal gland'

How to prove that this is an important portal of entry? B. Inoculation of 10^{5.5} SID₅₀ WSSV via nephropore & looking for viral antigen positive cells (IIF) 18hpi -> positive cells only in the antennal gland 24hpi -> positive cells in the antennal gland & all over the shrimp's body The cuticle & peritrophic membrane form a firm barier against pathogens, even during molting

Q: Is there a place where there is no cuticle & close to the hemolymph? A: Yes, 'antennal gland'

How to prove that this is an important portal of entry? C. Natural inoculation by immersion in 1 liter water with 10^{5.5} SID₅₀ ml⁻¹ WSSV during a salinity drop (35g/l -> 5g/l) (causing extensive urination/opening of the nephropore) + collection of urine and hemolymph + qPCR

The cuticle & peritrophic membrane form a firm barier against pathogens, even during molting 15/15 100 14/15 93% 12/15 80%

With virus in urine

With virus in hemolymph

The antennal gland is an important portal of entry for pathogens

MODEL 1: Portal of entry

Intra-nephrocomplex inoculation of virus and bacteria -> infection!

How to enter under natural conditions?

Urination!

(hypotonic water, agression, feed uptake, molting)

Urination

End of urination

MODEL 2: ecdysis/molting

Before molting (stage D2)

Just before molting

During molting

During molting

Just after molting (stage A)

Just after molting (stage A)

After molting (stage A)

After molting (stage A)

After molting (stages B-C-D1)

Everything is ready for the next molting