Tracking ISAV-HPR0 transmission

Possible transmission pathways to ISA

Modified from Trude Lyngstad. PhD Thesis 2012

Very little is known about ISAV-HPR0 transmission pathways between the three compartments of Atlantic salmon production

Faroese Atlantic salmon Aquaculture

- One landbased broodstock company
- Eight fresh water (Fw) farms with juveniles
- 26 marine (Sw) production sites with Atlanic salmon

Re-establishment of the Atlantic salmon farming industry

Re-establishment of the Atlantic salmon farming industry

- New legislation on biosecurity
- Vaccination against ISAV
- Screening for ISAV of all three compartments to study the risk of re-emergence of ISA

	Kidneys				Gills	
	Total	HPF	R0 +ve	Total	HPR	0 +ve
Year	n	n	%	n	n	%
2005	2998	0	0	-	-	-
2006	7157	10	0.1	-	-	-
2007	6505	142	2.2	5387	811	15.1
2008	-	-	-	9066	1100	12.1
2009	-	-	-	8847	852	9.6
Total	16660	152	0.9	23300	2763	11.9

Christiansen et al. J Gen Virol. (2011), 92, 909-91

ISAV-HPR0 causes a transcient infections

Christiansen et al. J Gen Virol. (2011), 92, 909-918

Marine production sites were infected with ISAV-HPR0 on average 8 months post sea water transfer

potential marine reservoir

Christiansen et al. J Gen Virol. (2011), 92, 909-91

HPR0 in fresh water juvenile salmon and Broodfish

Prevalence of ISAV-HPR0 in fresh water juvenile salmon

	Total N	HPR0 N	HPR0 %
2007	639		
2008	732		
2009	1917		
2010	1792		
2011	2150		
2012	406		
2013	285		
total	7921		

Prevalence of ISAV-HPR0 in fresh water juvenile salmon

639 732	0	0
722		0
132	39	5.3
1917	85	4.4
1792	288	16.1
2150	131	6.1
406	71	17.5
285	16	5.6
7921	630	8.0
	1792 2150 406 285	1792 288 2150 131 406 71 285 16

Production cycles of juvenile salmon tested HPR0 +ve

	Freshwater pre-smolt fish groups						
Year	N	Н	F	L	G	V	
2008	0		0	0	- 1	0	
2009	1	0	0	0	0	2	
2010	1	2	0	0	2	2	
2011	0	0	0	0	- 1	- 1	
2012	0	2	0	0	2	2	
2013	0	- 1	0	0	1	1	
Total	2	5	0	0	7	8	

Prevalence of HPR0 in broodfish at stripping

Year	Total N	HPR0 N	HPR0 %
2007	256		
2008	474		
2009	50		
2010	427		
2011	210		
2012	263		
2013	65		
Total	1745		

Prevalence of HPR0 in broodfish at stripping

Year	Total N	HPR0 N	HPR0 %
2007	256	9	5
2008	474	210	40
2009	50	0	0
2010	427	395	93
2011	210	73	35
2012	263	1	0.3
2013	65	0	0
Total	1745	688	39

Phylogenetics analysis of ISAV-HPR0 in the three compartments

- The phylogenetic analysis is based on 1051 bp of the $H\!E$ gene including the HPR.
- Phylogenetic relationship between

 - HPR0 in Broodfish
 HPR0 in juvenile Atlantic salmon
 - HPR0 in marine Atlantic salmon
 - All published HPR0

Phylogenetic three showing the relationship between the ISAV-HPR0 isolated in all three compartments in Norway

Phylogenetic three showing the relationship between all ISAV-HPR0 isolated in the three compartments in NO, SCO, USA,CAN and CHI

Phylogenetic three showing the relationship between representative ISAV-HPR0 isolates of the four major EU subgroups

Prevalence of HPR0 in broodfish at stripping in 2008

2000								
Year	Total N	HPR0 N	HPR0 %					
2007	256	9	5					
2008	474	210	40					
2009	50	0	0					
2010	427	395	93					
2011	210	73	35					
2012	263	1	0.3					
2013	65	0	0					

Phylogenetic three showing the clustering of FO Broodfish (2008)

Fresh water smolt farms receiving eggs from HPR0 +ve Broodfish (late 2008 / early 2009)

Stripping No	Stripping (month)	HPR0 BF (%)	Eggs (10E6)	Fw- smolt farms	2009 HPR0 (%)	2010 HPR0 (%)
1	Sept.	2	1.3	G	0	30
2+3	Oct.	15	0.9	N+H	3	28
4	Oct.	36	0.8	V	17	11
7+8	Oct.	68	1.4	F	0	0

Phylogenetic three showing clustering of FW juvenile salmon (2009-10)

Phylogenetic three showing clustering of FW juvenile salmon (2009-10) in the EU-NA subgroup

Fresh water smoltfarms reseiving eggs from HPR0 +ve Broodfish (2010/11)

Stripping No	Stripping (month)	HPR0 (%)	Eggs (10E6)	Fw Smolt farms	2011 HPR0 (%)	2012 HPR0 (%)	2013 HPR0 (%)
1-3 8+9 19	Sept. Oct. Nov.	91 98	0.6 0.4 2.1	N+H	0	38	6
4+5	Oct.	80	1.2	G	19	4	18
6+7	Oct.	80-100*	0.7	٧	15	48	8
11	Oct.	100					
12	Nov.	100	0.3				
14	Nov.	100°	0.6	F	0	0	0

Phylogenetic three showing clustering of Fw-smolt (2011-2013)

Phylogenetic three showing clustering of Fw juvenile salmon (2011-2013) in EU-NA subgroup

Genetic distance between Broodfish (2010) and Fw juvenile salmon (2011-13)

No genetic evidence that HPR0 was transmitted vertically from Broodfish via eggs to juveniles

HPR0 in Icelandic Broodfish

Year	Samples N	HPR0 +ve N	HPR0 +ve %
2009	2374		
2010	4502		
2011	6120		
2012	2320		
2013	2425		
2014	1272		
Total	19013		

HPR0 in Icelandic Broodfish

Year	Samples N	HPR0 +ve N	HPR0 +ve %
2009	2374	455	19
2010	4502	183	4
2011	6120	110	2
2012	2320	6	0,3
2013	2425	117	5
2014	1272	3	0,2
Total	19013	874	5

Icelandic HPR0 cluster in two distinct subgroups

No genetic evidence that HPR0 is transmitted vertically from Icelandic Boodfish via eggs to Faroese juvenile salmon

EU-NA

41-43 nucleotides
39-41 nucleotides

Conclusions

- HPR0 is prevalent in all three compartments of Atlantic salmon production in the Faroe Islands
- HPR0 infection is highly contagious and transient in all three compartments suggesting salmon is infection and not carriers

Conclusions

- No or little genetic link between
 - HPR0 in FO Broodfish and FO juvenile salmon
 - HPR0 in Ice Broodfish and FO juvenile salmon
 - HPR0 in NO Broodfish and FO juvenile salmon

Conclusions

- Close genetic link between
 - · HPR0 in marine salmon and juvenile salmon
 - · HPR0 in marine salmon and Broodfish
 - FO-HPR0 and FO-HPRdel in EU-G2

