

European Union Reference Laboratory for Fish Diseases

National Veterinary Institute, Technical University of Denmark, Copenhagen

Barcoding of fish cell lines - the origin of cell lines is not always what we believe

Argelia Cuenca Navarro and Niels Jørgen Olesen

21st Annual Workshop of the National Reference Laboratories for Fish Diseases, Kgs. Lyngby, Denmark,

Introduction

- For several years rumors that some cell lines do not have the expected origin.
- e.g. EPC "Epithelioma Papullosum Carpio" = FHM (Fathead minnow) Cells. Both in the *cyprinid* family
- Who cares?
- Correlates to the fish species
- All cell lines shipped from the EURL will have a barcode of origin
- Provide a SOP for COI barcoding cell lines.

Rainbow trout mitochondrion

COX1 or COI Code for cytochrome c oxidase subunit I

Part of the cytochrome c oxidase enzyme complex (Respiratory complex IV), a transmembrane protein found in bacteria and in the mitochondrion of eukaryotes.

Respiratoty complex IV consists of 3 catalytic subunits encoded by mitochondrial genes (COXI, COXII, COXIII) and multiple structural subunits encoded by nuclear genes.

COXI is widely used in DNA barcoding in animals,

- it is variable enough to distinguish closely related species,
- well conserved among co-specific individuals

Barcoding of Life Project

- The Barcode of Life is a project to create a public collection of reference sequences from vouchered specimens of all species of life.
- A Barcode sequence is a short nucleotide sequence from a standard genetic locus for use in species identification.
- For animals, this standard genetic locus is a 650 base pair region on the 5' end of the mitochondrial cytochrome oxidase subunit I (COI) gene.

Barcoding of life database

BOLDSYSTEMS Databases | Taxonomy | Identification | Workbench | Resources

A data retrieval interface that allows for searching over 1.7M public records in BOLD using multiple search criteria

DNA Barcode Education Portal:

A custom platform for educators and students to explore barcode data and contribute novel barcodes to the BOLD database

Barcode Index Numbers: 0

A searchable database of Barcode Index Numbers (BINs). sequence clusters that closely approximate species.

Workbench:

0

An integrated data collection and analysis environment that securely supports the assembly and validation of DNA barcodes and ancillary sequences.

The Barcode of Life Data Systems is designed to support the generation and application of DNA barcode data. The platform consists of four main modules: a data portal, a database of barcode clusters, an educational portal, and a data collection workbench.

Sequence statistics			
Barcode clusters for animals (BINs)	506,773	Animals	178,312
All Sequences	6,297,285	Plants	65,765
Barcode Sequences	5,447,192	Fungi & Other Life	20,901

Barcoding of Life database- BoLD

Records for bony fishes

Taxon Description (Wikipedia)

The Actinopterygii / æktin opte 'rdʒi.aɪ/, or ray-finned fishes, constitute a class or subclass of the bony fishes. The ray-finned fishes are so called because they possess lepidotrichia or \"fin rays\", their fins being webs of skin supported by bony or horny spines (\"rays\"), as opposed to the fleshy,lobed fins that characterize the class Sarcopterygii which also, however, possess lepidotrichia. These actinopterygianfin rays attach directly to the proximal or basal skeletal elements, the radials, which represent the link or connectionbetween these fins and the internal skeleton (e.g., pelvic and pectoral girdles). <u>full article at Wikipedia</u>

▼ BOLD Stats			
Specimen Records:	268,390	Public Records:	141,676
Specimens with Sequences:	221,426	Public Species:	11,328
Specimens with Barcodes:	213,892	Public BINs:	14,914
Species:	18,551		
Species With Barcodes:	17,173		
Species List - Progress		Access Published & Released Data	

http://www.barcodinglife.com/index.php/Taxbrowser Taxonpage?taxid=77

The figure shows the full COI for rainbow trout and the primer binding sites. The whole region (blue + green) is the barcoding region, that can be amplified with the primers jgLCO1490 and jgHCo2198

Two internal primers where designed to amplify a range of metazoans mICO1int forward and reverse.

Each reaction (blue and green) amplifyes ~330 nt

Currently only the green region is needed to barcode fish cell lines

Primer set jgLCO1490 + jgHco2198 (Folmer et al. 1994 Mol Mar Biol Biotechnol)

Internal primers mICO1intF and mICO1intR (Leray et al. 2013. *Frontiers in Zoology*)

Results

Cell line	Navn	Species of origin	RESULTS	identity
EPC* Epitheliom	Enithaliama Danullacum Carnia	Cyprinus carpio	Pimephales promelas	
		(common carp)	(fathead minnow)	100%
BE-2	Bluegill Fry	Lepomis macrochirus		
DF-2 D	bluegin i ry	(bluegill)	Lepomis	100%
	Chinaak Salman Embrua	Oncorhynchus tshawytscha	Oncorhynchus tshawytscha	
	Chillook Sainton Entoryo	(Chinook Salmon)	(Chinook Salmon)	100%
RTG-2 Ra	Painhow trout gonad	Oncorhynchus mykiss	Oncorhynchus mykiss	
	Rainbow trout gonau	(rainbow trout)	(rainbow trout)	100%
FHM Fat	Fat Haad Minnow	Pimephales promelas	Pimephales promelas	
	Fat Head Millinow	(Fat Head Minnow)	(Fat Head Minnow)	100%
cco cl	Channel Catfich Ovany	Ictalurus punctatus	Ameiurus nebulosus	
	Channel Cathsh Ovary	(Channel catfish)	(Brown bullhead)	100%
EK-1	Eel Kidney	Anguilla anguilla or A. obscura	Anguilla japonica	100%
ASK /	Atlantic Salmon Kidney	Salmo salar	Oncorhynchus mykiss	
		(Atlantic salmon)	(Rainbow trout)	100%
ССВ (Common Carp Brain	Cyprinus carpio	Cyprinus carpio	
		(common carp)	(common carp)	100%
SBL	Son Pass Lymphoid	Dicentrarchus labrax	Oncorhynchus tshawytscha	
	Sea dass Lympholu	(European seabass)	(Chinook Salmon)	100%
WSSK	White Sturgeon SKin-1	Acipenser transmontanus	Acipenser transmontanus	100%

EPC Epithelioma Papullosum Carpio cells = FHM cells

Cyprinus carpio (common carp)

Pimephales promelas (fathead minnow)

History of origin : (Tomasec & Fijan, 1971; Fijan et al., 1983), "Epithelioma Papullosum Carpio" Tomasec, J. and Fijan, N. Virusne bolesti riba (viral diseases of fish) (1971). Final report on research under a part of project 6n/1966, 1-29. Zagreb. Most likely mistake at production as Fathead is only observed in Americas

Identification Summary:

From BoLD

Taxonomic Level	Taxon Assignment	Probability of Placement (%)
Phylum	Chordata	100
Class	Actinopterygii	100
Order	Cypriniformes	100
Family	Cyprinidae	100
Genus	Pimephales	100
Species	Pimephales promelas	100

EPC and FHM: Most likely same origin but different appearance and sensitivity

EPC = FHM

IHNV

CCO Channel Catfish Ovary: related species but not Channel catfish

Ictalurus punctatus (Channel catfish)

identification Summary:

Ameiurus nebulosus (Brown bullhead)

Taxonomic Level	Taxon Assignment	Probability of Placement (%)
Phylum	Chordata	100
Class	Actinopterygii	100
Order	Siluriformes	100
Family	Ictaluridae	100
Genus	Ameiurus	100
Species	Ameiurus nebulosus	99.6

ASK Atlantic Salmon Kidney from Rainbow trout!?

Salmo salar (Atlantic salmon)

Oncorhynchus mykiss (Rainbow trout)

Search Result:

A species level match could not be made, the queried specimen is likely to be one of the following:

Oncorhynchus mykiss Oncorhynchus sp.

For a hierarchical placement - a neighbor-joining tree is provided: Tree Based Identification

Most susceptible cell line for ISAV

RTG-2 cells?

Originally derivate from TO cells (NOT trout Ovary but the name of the technician who produced them from A. salmon: Tove! To be tested with cell from VI, Oslo

Identification Summary:

Taxonomic Level	Taxon Assignment	Probability of Placement (%)
Phylum	Chordata	100
Class	Actinopterygii	100
Order	Salmoniformes	100
Family	Salmonidae	100
Genus	Oncorhynchus	100

SBL Sea Bass Lymphoid = CHSE-214 from Chinook??

Dicentrarchus labrax (European seabass)

Oncorhynchus tshawytscha (Chinook Salmon)

Original mistake or cross contamination in our laboratory? To be tested with original cells from ANSES, Brest

Identification Summary:

Taxonomic Level	Taxon Assignment	Probability of Placement (%)
Phylum	Chordata	100
Class	Actinopterygii	100
Order	Salmoniformes	100
Family	Salmonidae	100
Genus	Oncorhynchus	100
Species	Oncorhynchus tshawytscha	100

A number of cell lines in our repository still to be tested

SSN-1	Striped Snakehead Nephron	Striped Snakehead	Channa striata	
ССВ	Common <u>Carp</u> Brain	Common <u>Carp</u>	Cyprinus carpio	
CIK	Ctenopharyngodon idella Kidney	Grass carp	Ctenopharyngodon idella	
SBL	Sea Bass Lymphoid	European seabass	Dicentrarchus labrax	
CLC	Carp leucocyte cells	Common Carp	Cyprinus carpio	
R-KF (=KF- 1)	Koi <u>carp</u> fin	Koi <u>carp</u>	Cyprinus carpio	
SHK-1	Salmon Head Kidney	Atlantic Salmon	<u>Salmo</u> salar	fibroblast
GF	Grunt fin	blue striped Grunt	Haemulon sciurus	
GFF	Goldfish Fin	Goldfish	Carassius auratus	

Conclussion

- Barcoding of fish cell lines using COI efficient and simple method
- SOP produced and can be provided
- Continuous risk of cross contamination of cell lines and they should therefore be tested regularly
- Barcoding of all cell line shipped from the EURL
- Next step: NGS and further genetic characterization of our cell lines for use in virology, immunology, toxicology etc.

Acknowledgement

- Betina Lynnerup, Didde Hedegaard Sørensen, Troels Secher Rundqvist and the rest of the DTU team
- Morten Limborg Ucph, Susie S. Mikkelsen

• Thank you for your attention