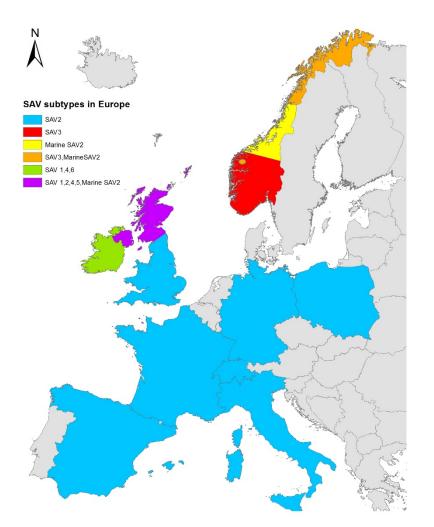
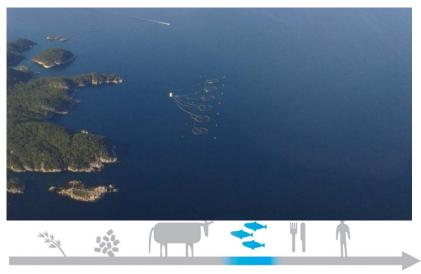
Occurence and control of Salmonid alphavirus in the North Atlantic

Britt Bang Jensen

22nd annual workshop of the EURL, DTU, Lyngby. May 30th, 2018


Introduction

- Salmonid Alphavirus:
 - Sleeping disease
 - Pancreas disease
- Piscine myocarditis virus:
 - Cardiomyopathy syndrome
- Hosts: Salmonids


Photo: Trygve Poppe

Occurence of SAV & CMS


- PD epidemics in Scotland, Ireland and Norway
- CMS also on Faroe Islands

PD & CMS in Scotland (from Marian McLoughlin, PD TriNation 2018) New PD cases per year

- Number of PD cases in Scotland declined in 2017.
- CMS increased dramatically
- Database from FishVetGroup
- (PD not notifiable)

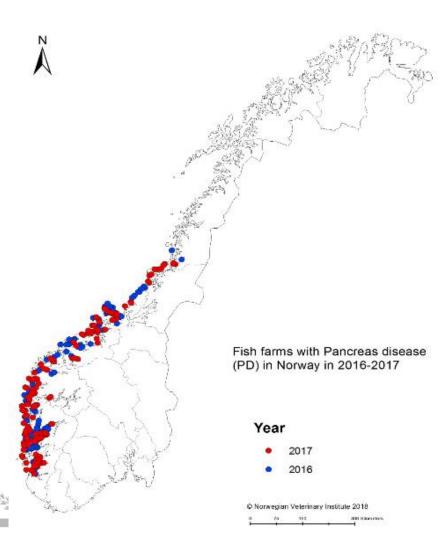
CMS cases per year

Current concerns in Scotland (from Marian McLoughlin, PD TriNation 2018)

- Dramatic and worrying rise in CMS cases and it is occurring in smaller fish.
- No accurate information of the impact of any of the cardiac myopathies (PD, HSMI &CMS).
- More information held by individual salmon companies.
 - More to be done to fully understand the impact of these diseases and available control measures.

Industry concerns in Ireland (from Susie Mitchell, PD TriNation 2018)

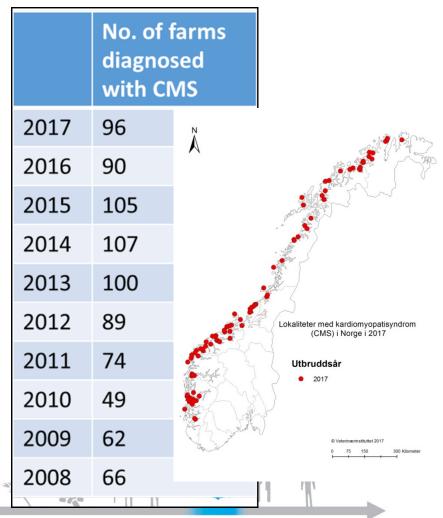
- How to categorise mortalities when concurrent infections present
- Interaction between other infectious agents and SAV need further research
- Still questioning the efficacy of vaccination further evidence would be good
- Availability of new/better PD vaccines??

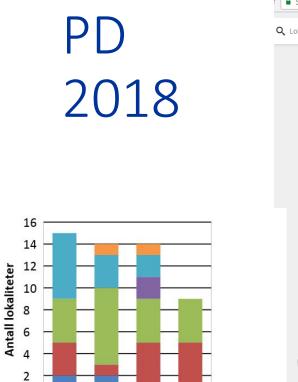


PD & CMS in Norway

Number of annual outbreaks of PD

2017	176
2016	138
2015	137
2014	142
2013	99
2012	137

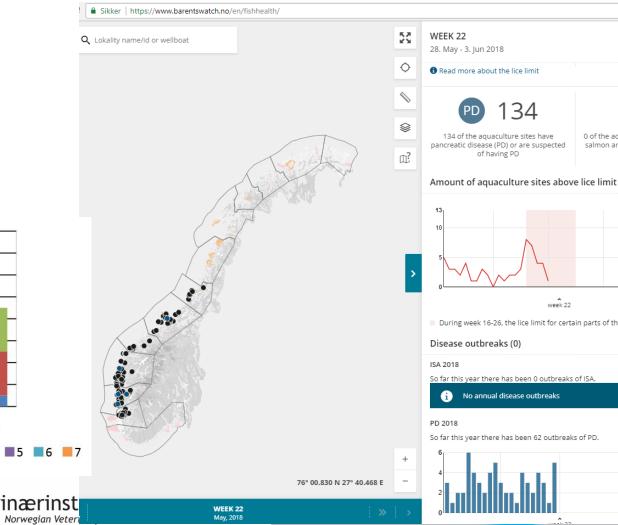


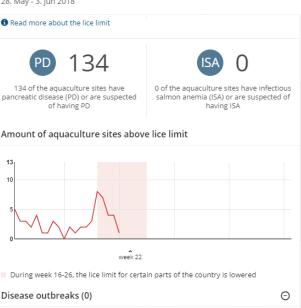


PD & CMS in Norway

- CMS was diagnosed in 96 farms at NVI, and 100 farms in private labs – Overlap likely
- PMCV is widespread (Svendsen et al, EAFP)
- CMS ranged as the second most important problem by the fish health personnal
- One company says it causes double the loss as PD

Februar Produksjonssone


Januar


0

April

Mars

☆ :

Ŧ

PD in Norway –control by regulations

- Notifiable on national list
- New legislation fall 2017:
 - Two sones
 - Endemic & non-endemic
 - Different implications of outbreaks
 - No stamping out if no/neglible risk of disease spread
 - Restrictions on transport of fish
 - Direct slaughter –limited use of holding pens

PD in Norway -regulations

- New legislation fall 2017:
 - Mandatory monthly screening of all salmonid farms using seawater
 - 20 fish per site
 - Heart (kidney)
 - PCR & subtyping
 - Results (+ & -) reported to NRL

Management of PD in Ireland (from Susie Mitchell, PD TriNation 2018)

- Good quality LARGE smolts
- Stock to final density
- Biosecurity
- Clean nets
- Low stress management
- Single year class
- Feeding protective diets
- Vaccination

Vaccination:

PD:

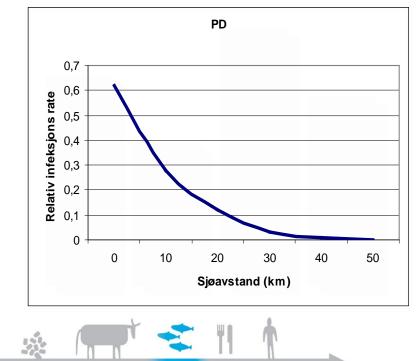
- Inactivated monovalent vaccine available since 2007 (based on SAV1)
 - Multivalent vaccine since 2015
- New vaccine targeted at SAV3 since 2015
- Claims to reduce virus shedding and disease
- Does not hinder infection with SAV
- DNA-based vaccine launced in march 2018

CMS:

• Not in the near future....

Infection pressure and firegates

- Most important transmission route is from other farms:
 - Seaway distance explains 80% of the outbreaks

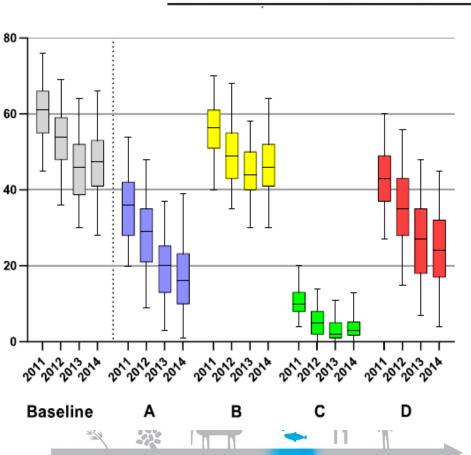


Preventive Veterinary Medicine Volume 93, Issue 1, 1 January 2010, Pages 51-61

A stochastic model for the assessment of the transmission pathways of heart and skeleton muscle inflammation, pancreas disease and infectious salmon anaemia in marine fish farms in Norway

Magne Aldrin ^{a, b} A ⊠, Bård Storvik ^{a, b}, Arnoldo Frigessi ^{a, b, c}, Hildegunn Viljugrein ^{d, e}, Peder A. Jansen ^d

Preventive Veterinary Medicine


journal homepage: www.elsevier.com/locate/prevetmed

CrossMark

Scenari	Description	
U		S
Baseline	No disease-triggered har	ssion
A	Infected cohorts removed clinical outbreak	trans
В	As A, but only if economi	Disease
С	Infected cohorts are remo infection	Dis
D	Infected cohorts are harv the onset of a clinical out	
	Veterinærinstituttet	

Norwegian Veterinary Institute

Summary

- PD is still a serious problem, but more concern about CMS
- PMCV is more widespread than suspected
- Knowledge of occurence= Control(?)
- Vaccination is still not sufficient
- No cell culture for PMCV
- Control by compartments and biosecurity
 - Possible and economically beneficial in the long run

Knowledge gaps

- Difficult to capture the impact of the diseases
- Standardizing tests and diagnostic Se and SP of tests for different purposes
- What is reasonable to expect from a PD or CMS-vaccine?
- What are the most important transmission routes for PMCV?
- What triggers disease development?
- What are the barriers to implementing the measures that we know works

Veterinærin

PD TriNation

- Meetings between science, industry and decision-makers since 2005
- 80-100 participants each time
- Presentations posted on website: www.trination.org
- Next meeting:
 - Dublin in June 2019

