Listing of fish diseases in EU legislation

Niels Jørgen Olesen

Animal Health Law - Status

5 years

• Publication – entering into force: 31 March 2016

Transposition period:

• Supplementary rules to be drafted and adopted: 36 months

Delegated acts

Implementing acts

Member States preparing period:
 24 Months

• AHL will apply from : 1 April 2021

Delegated acts

- One Delegated act for the listing of diseases (both aquatic and terrestrial diseases)
- One delegated act for diagnostic methods (both aquatic and terrestrial diseases)
- One delegated act for all other issued aquatic animals:
 - Requirements for registration and approval
 - Requirements for disease notification and control
 - Requirements for eradication programmes and disease free status
 - Requirements for intra Union movements incl. health certification
 - Requirements for entry into the Union of aquatic animals

Implementing acts

- One implementing act for surveillance, eradication and disease control
 - Detailed requirements for surveillance- and eradication programmes and applications for disease free status
 - Practical implementation of contingency plans
- One implementing act for Intra Union movement and entry
 - Derogations from obligations to approve or register establishments
 - Animal health certificates models
 - List of third countries
- One implementing act for approval of national measures
 - List of diseases subject to national measures
 - Approval of eradication programmes and disease free areas

New AHL: From 2 to 5 categories of disease listing

- Exotic diseases
- Non-exotic diseases

- Category a): Diseases not normally occurring in the Union
- Category b): Diseases which must be controlled in al MS
- Category c): Diseases subject to voluntary control in the MS
- Category d): Diseases for which movement restriction measures may apply.
- Category e): Diseases which shall be subject to surveillance

Assessment of the listing of all existing listed diseases + candidate diseases

• In order to provide the necessary background for evaluation of diseases the EURL Fish was asked to provide updated information based on scientific studies.

ASSESSMENT CHITCHIA TISH diseases								
Disease	Salmonid alphavirus (SAV)							
Source								
	DISEASE PROFILE							
Animal species								
Morbidity and Mortality rates								
in animal populations								
Zoonotic character								
Resistant to treatments, AMR								
Persistence in the animal								
population or environment								
Routes and speed of								
transmission animals-animals								
Routes and speed of								
transmission animals-humans								
Absence, presence and								
distribution of the disease in								
the EU								
Risks of its introduction into								
the EU if absence in EU								
Existence of diagnostic and								
disease control tools								
	IMPACT OF THE DISEASE ON							
Agricultural production:								
 level of presence of the 								
disease								
 loss of production 								
- other losses								
Human health:								

ACCECCMENT ORITERIA - Fish dispaso

- transmissibility	
- severity of human	
forms	
 effective prevention or 	
medical treatments	
Animal welfare	
Biodiversity and the	
environment	
POTENTI	AL TO GENERATE A CRISIS SITUATION AND ITS POTENTIAL USE IN BIOTERRORISM
Bioterrorism	No data
FEASIBILITY, AV	/AILABILITY AND EFFECTIVENES OF THE DISEASE PREVENTION AND CONTROL MEASURES
Diagnostic tools and capacities	
Vaccination	
Medical treatments	
Biosecurity measures	
Restrictions on the movement	
of animals and products	
Killing of animals	
Disposal of carcasses and other	
relevant animal by-products	
	IMPACT OF DISEASE PREVENTION AND CONTROL MEASURES
Direct and indirect cost for the	
affected sector and the	
economy as a whole	
Social acceptance	
Welfare of affected	
subpopulations of kept and wild animals	
Environment and biodiversity	

Assessment of VHS and IHN

Disease	Viral haemorrhagic septicaemia (VHe)						
Disease	v nar naemorrnagic septicaenna (VII3)						
Source	Routes and speed of transmission animals-animals Routes and speed of	between 35 and 50 °C and with 3 report. Pathogen survival out term carriers of the virus.	hin minutes at higher temperatures side the host, and susceptibility to update on the significance and the in VHS is almost impossible to achieve 80 % of the farm were infected in 15	HSV is completely inactivated within hours at temperatures s. For full survival estimates see FishEggTrade Work package of disinfection. Some survivors of epizootics will become long-inpact of the disease. Unfortunately exact data on the presence of VHS and losses due to eas the disease is endemic in large areas of EU and casualties are not reported. In Denmark 2005, in 2008 just before a final eradication only approximately 5 % (10-15 farms) were onic benefits of a total eradication at that time was approx. 6.4 mill €/vear				
	transmission animals-humans	Human health:		and other birds access. Spillage of water from fish transport lorries into the farm should be avoided. Fresh fish should not be				
Animal species	Absence, presence and distribution of the disease in the EU	transmissibility severity of human forms effective prevention or medical treatments Animal welfare		used as feed for farmed fish. Transfer of live fish from sea water to fresh water is likewise not recommendable. Depending on local conditions, it is possible to eradicate the disease among farmed fish. In Denmark, the majority of fish farms (>400) were infected with the pathogen in the 1960s. Based on a programmes agreed on between the fish farmers and the competent authorities the country succeeded in eradicating the disease with the last outbreak taking place in January 2009. One of the key points in the programmes has been stamping out, followed by drainage and disinfection of the ponds and restocking after fallowing with certified free fish. Stamping out procedures have been performed both in case of specific new outbreaks				
Morbidity and Mortality rates	Risks of its introduction into the EU if absence in EU	Biodiversity and the environment POTENT Bioterrorism FEASIBILITY, A		but also in more controlled manners where all farms at the same system are stamped out after a pre-decided plan. (Olesen and Skall, 2014)				
in animal populations	Existence of diagnostic and disease control tools		Restrictions on the movement of animals and products	The health categorisation as described in Council Directive 2006/88/EC provides the criteria for restriction of movement between farms of different health categories. In case of outbreaks order of closure can be given in order to prevent further spreading				
Zoonotic character			Killing of animals	In case of eradication programs fish are killed according to procedures given in the up-to-date operations manual as described in Council Directive 2006/88/EC Annex VII contingency plans				
Resistant to treatments, AMR Persistence in the animal	Aquacultural production: - level of presence of the		Disposal of carcasses and other relevant animal by-products	in Council Directive 2006/88/EC Annex VII contingency plans				
population or environment	disease - loss of production			IMPACT OF DISEASE PREVENTION AND CONTROL MEASURES				
	- other losses	Diagnostic tools and capacities	affected sector and the economy as a whole	VHS have had a very significant impact on the economy of the aquaculture sector producing rainbow trout, olive flounder and turbot- especially in environments with water temperatures in the range of 5-15 C. A major reason for the international competitiveness of the Danish aquaculture sector is the eradication of VHS in 2009.				
			Social acceptance	Well accepted				
		Vaccination	Welfare of affected subpopulations of kept and wild animals Environment and biodiversity	Fish welfare is not affected by preventative or control measures				
			clivironment and biodiversity	Outbreaks of some genotypes of VHS could cause serious impact on environment and +biodiversity.				
		Medical treatments	In order to prevent introduction and	d spreading of the disease into and between farms, a number of zoosanitary measures can be				
		Biosecurity measures	used. Where possible, netting over	the ponds and fencing the sides of the farms is strongly advisable in order to prevent herons				

Assessment of VHS, IHN, EHN, SAV, and VNN done

EFSA will be approached with regard to KHV

Listing of susceptible species

Proposal for fish species to be listed as susceptible to infection with listed diseases: **EHN**

Disease	Susceptible species	Vector species	Comment
Epizootic	Rainbow trout (Oncorhynchus	Bighead carp (Aristichthys	Species in red are added
haematopoietic	mykiss),	nobilis), goldfish (Carassius	_
necrosis	Redfin perch (Perca Fluviatilis)	auratus), crucian carp (C.	
	Maquaria perch (Maquaria	carassius), common carp and	
	australasica),	koi carp (Cyprinus carpio),	
	Silver perch (Bidyanus bidyanus)	silver carp	
	Mountain galaxias (Galaxias olidus)	(Hypophtalmichthys	
	Mosquito fish (Gambusia affinis)	molitrix), Chub (Leuciscus	
	Black bullhead (Ameiurus melas)	spp), Roach (Rutilus rutilus),	
	Northern Pike (Esox Lucius)	Rudd (Scardinius	
	Pike-perch (Sander lucioperca)	erythrophthalmus), tench	
		(Tinca tinca),	
		Australian smelt (Retropinna	
		semoni), Australian bass	
		(Maquaria novemaculeata),	
		Golden perch (M. ambigua)	
		Barramundi (Lates	
		calcarifer), and	
		Sumatra barb (Capoeta	

Listing of susceptible species

Proposal for fish species to be listed as susceptible to infection with listed diseases: VHS

W	ith listed als
Viral	Rainbow trout (Oncorhynchus
haemorrhagic	mykiss),
septicaemia	Pacific salmon (O. spp.)
	Brown trout (Salmo trutta),
	Marble trout (Salmo marmoratus) Atlantic salmon (Salmo salar)
	Herring (Clupea spp.),
	Whitefish (Coregonus sp.),
	Pike (Esox lucius and E.
	masquinongy)
	Haddock (Gadus aeglefinus), Pacific
	Cod (G. macrocephalus),
	Atlantic cod (G. morhua),
	Rockling (Onos mustelus),
	Turbot (Scophthalmus maximus),
	Sprat (Sprattus sprattus),
	Grayling (Thymallus thymallus)
	Olive flounder (Paralichthys
	olivaceus),
	South American pilchard (Sardinops sagax),
	Poor cod (Trisopterus minutus),
	Whiting (Merlangius merlangus),
	Blue whiting (Micromesistius
	poutassou)
	Norway pout (Trisopterus esmarkii),
	Alaska pollock (Theragra
	chalcogramma),
	Fourbeard rockling (Enchelyopus
	cimbrius),
	Pacific hake (Merhiccius productus), Common dab (Limanda limanda),
	European flounder (Platichthys
	flesus),
	European plaice (Pleuronectes
	platessa)
	Greenland halibut ((Reinhardtius
	hippoglossoides),
	Argentine (Argentina sphyraena),
	Surf smelt (Hypomesus pretiosus),
	Pacific sand lance (Ammodytes
	hexapterus sp.),
	Sand goby (Pomatoschistus
	minutus), Round goby (Neogobius

melanostomus).

aggregate),

Shiner perch (Cymatogaster

Freshwater drum (Aplodinotus

Brook trout (Salvelinus fontinalis), Arctic charr (S. alpinus), Beluga (Huso huso), Danube sturgeon (Acipenser gueldenstaedtii), Sterlet sturgeon (Acipenser ruthenus), Starry sturgeon (Acipenser stellatus). Sturgeon (Acipenser sturio), Siberian Sturgeon (Acipenser Baerii) Bighead carp (Aristichthys nobilis), goldfish (Carassius auratus), Crucian carp (C. carassius), common carp koi carp (Cyprinus carpio), silver carp (Hypophtalmichthys molitrix), Chub (Leuciscus spp), Roach (Rutilus rutilus). Rudd (Scardinius erythrophthalmus), tench (Tinca tinca) North African catfish (Clarias gariepinus), Northern pike (Esox lucius) Catfish (Ictalurus spp.), Black bullhead (Ameiurus melas), Channel catfish (Ictalurus punctatus). Pangas catfish (Pangasius pangasius), Pike perch (Sander lucioperca), Wels catfish (Silurus glanis) European seabass (Dicentrarchus labrax), Striped bass (Morone chrysops x M. saxatilis). Flathead grev mullet (Mugil cephalus), Red drum (Sciaenops ocellatus). Meagre (Argyrosomus regius), Shi drum (Umbrina

cirrosa), True tunas

(Thunnus spp.), Atlantic

bluefin tuna (Thunnus thynnus), White Grouper A large number of species is proposed to be added in order to be in line with the OIE. Most of interest and of possible conflict is:

- Atlantic salmon added to the list of susceptible species- this species was taken off the list in 2006.
- Marble trout added.
- Wrasse sp. and lumpfish sp. used as cleaner fish in the salmon industry are now added to the list of susceptible species
- The following hybrids are added to the list of susceptible: O. mykiss x O. kisutch, O. mykiss x S. fontinalis triploid, O. mykiss x S. alpinus triploid
- The Arctic char and the brook trout is proposed inserted as vector species

The list is in fact very long and might be reduced by giving fish orders or families

(Epinephelus aeneus). grunniens), Pacific chub mackerel (Scomber Dusky grouper (Epinephelus marginatus), Senegalese japonicas), Three-spined stickleback solea (Solea senegalensis). Common sole (Solea solea), (Gasterosteus aculeatus), European river lamprey (Lampetra Common pandora (Pagellus erythrinus), Common dentex fluviatilis). European bass (Dicentrarchus (Dentex dentex), Gilthead seabream (Sparus aurata), labrax), Avu (Plecoglossus altivelis), White seabream (Diplodus sargus), Black spot Lake trout (Salvelinus namaycush), O. mykiss x O. kisutch, seabream (Pagellus mykiss x S. fontinalis triploid, bogaraveo), Red Sea Bream O. mykiss x S. alpinus triploid (Pagrus major). Wrasse (Labridae sp.), and Diplodus vulgaris, Sharop Lumpfish (Cyclopteridae sp.) snout seabream (Diplodus puntazzo), Common two banded seabream (Diplodus vulgaris), Red porgy

(Pagrus pagrus) Tilapia spp

(Oreochromis)

VHS susceptible species Proposed News:

- Atlantic salmon added to the list of susceptible species- this species was taken off the list in 2006.
- Marble trout added.
- Wrasse sp. and lumpfish sp. used as cleaner fish in the salmon industry are now added to the list of susceptible species
- The following hybrids are added to the list of susceptible: O.
 mykiss x O. kisutch, O. mykiss x S. fontinalis triploid, O. mykiss x
 S. alpinus triploid
- The Arctic char and the brook trout is proposed inserted as vector species
- For VHS: Proposal to group species in genera and families (salmonids for VHS)

Proposal for fish species to be listed as susceptible to infection IHN

Also for IHNV many additions are proposed of most interest is that:

- the Marble trout, the Arctic char and the Brook trout is proposed inserted as susceptible species
- The cod is moved from vector to susceptible species
- The white sturgeon proposed included as susceptible

Infectious haematopoietic

Chum salmon (Oncorhynchus keta). coho salmon (O. kisutch), Masou salmon (O. masou), rainbow or steelhead trout (O. sockeye salmon (O. nerka), pink salmon (O. rhodurus) chinook salmon (O.tshawvtscha). Atlantic salmon (Salmo salar), Lake trout (Salmo namaycush), Marble trout (Salmo marmoratus) Brook trout (Salvelinus fontinalis), Arctic charr (S. alpinus), Whitespotted char (S.leucomaenis), Pacific herring (Clupea pallasii), Shiner perch (Cymatogaster aggregata), Tube-snout (Aulorhychus flavidus), Ayu, (Plecoglossus altivelis), Atlantic cod (Gadus morrhua), White sturgeon (Acipenser transmontanus), and Northern pike (Esox lucius)

Beluga (Huso huso), Danube sturgeon (Acipenser gueldenstaedtii), Sterlet sturgeon (Acipenser ruthenus), Starry sturgeon (Acipenser stellatus). Sturgeon (Acipenser sturio), Siberian Sturgeon (Acipenser Baerii) Bighead carp (Aristichthys nobilis), goldfish (Carassius auratus), crucian carp (C. carassius), common carp and koi carp (Cyprinus carpio), silver carp (Hypophtalmichthys molitrix), Chub (Leuciscus spp), Roach (Rutilus rutilus), Rudd (Scardinius erythrophthalmus), Tench (Tinca tinca). North African catfish (Clarias gariepinus), Catfish (Ictalurus spp.), Black bullhead (Ameiurus melas). Channel catfish (Ictalurus punctatus), Pangas catfish (Pangasius pangasius). Pike perch (Sander lucioperca), Wels catfish (Silurus glanis) Atlantic halibut (Hippoglossus hippoglossus), Flounder (Platichthys flesus), Haddock (Melanogrammus aeglefinus) Atlantic cod (Gadus morrhua)

Also for IHNV additions are pr interest is that:

- the Marble
 Arctic char
 trout is proj
 as susceptil
 species
- The cod is vector to su species
- The white s proposed in susceptible

Proposal for fish species to be listed as susceptible to infection ISA

 Since the last list was produced ISAV HPRO is no longer listedtherefore it is suggested to transfer Rainbow trout to the list of vector species and not the susceptible species

Infection with HPR deleted infectious salmon anaemia virus	, Ann	Rainbow trout (Oncorhynchus mykiss), Amago trout(Oncorhynchus masau) Herring (Clupea harengus)

Proposal for fish species to be listed as susceptible to infection with KHV

 It is proposed to include hybrids of Cyprinus carpio as susceptible whereas it is proposed to include grass carp and gold fish as vector species

Koi herpes	Common carp and koi carp	Gold fish (Carassius
virus disease	(Cyprinus carpio)	auratus)
	Common carp hybrids (Cyprinus	Grass carp
	carpio x Carassius auratus) (crucian	(Ctenopharyngodon idella)
	carp × koi carp hybrids)	

This is a proposal for a preliminary list. The final list await the outcome of the OIE working group on assessment of the susceptible species of the 10 OIE listed fish diseases- to be finally adopted at the OIE General Assembly in 2019

The OIE working group

- An ad hoc Group on susceptibility of fish species to infection with OIE listed diseases will undertake assessments for the 10 OIE listed fish diseases.
- Develop a list of susceptible species for inclusion in the fish disease-specific chapters in the *Aquatic Code*.
- Develop a list of species with incomplete evidence for susceptibility for inclusion in Aquatic Manual

Members: Mark.Crane- Australa; Kei Yuasa Japan; Lori.L.Gustafson US; Sofie st Hilaire - Canada; Niels Jørgen Olesen Denmark

Background

- A new Chapter 1.5. 'Criteria for listing species as susceptible to infection with a specific pathogen' was introduced into the 2014 edition of the *Aquatic Code*.
- The purpose of this chapter is to provide criteria for determining which host species are listed as susceptible of each disease specific chapter in the *Aquatic Code*.
- The criteria are to be applied progressively to each disease specific chapter in the *Aquatic Code*.

Chapter 1.5.

Criteria for listing species as susceptible to infection with a specific pathogen

- The purpose to provide criteria for determining which species are listed as susceptible of each <u>disease</u>-specific chapter in the <u>Aquatic Code</u>.
- Scope
- Susceptibility may include clinical or non-clinical <u>infection</u> but does not include species that may carry the <u>pathogenic agent</u> without replication.
- The decision to list a species as susceptible should be based on a finding that the **evidence** is **definite**. However, **possible susceptibility** of a species is also important information and this should also be included in «Susceptible host species» of the relevant <u>disease</u>-specific chapter of the <u>Aquatic Manual</u>.

A 3-stage approach

- 1. criteria to determine whether the route of transmission is consistent with **natural pathways** for the <u>infection</u>
- criteria to determine whether the <u>pathogenic agent</u> has been adequately identified
- criteria to determine whether the evidence indicates that presence of the pathogenic agent constitutes an infection.

Stage 1: criteria to determine whether the route of transmission is consistent with natural pathways for the infection

- The evidence should be classified as transmission through:
- **1. natural occurrence**; includes situations where <u>infection</u> has occurred without experimental intervention e.g. <u>infection</u> in wild or farmed populations; or
- **2. non-invasive experimental** procedures; includes cohabitation with infected hosts, <u>infection</u> by immersion or ingestion.

Stage 2: criteria to determine whether the pathogenic agent has been adequately identified

The <u>pathogenic agent</u> should be identified and confirmed in accordance with the methods described in the <u>Aquatic</u>
 <u>Manual</u>, or other methods that have been demonstrated to be equivalent.

Stage 3: criteria to determine whether the evidence indicates that presence of the pathogenic agent constitutes an infection

- A) the <u>pathogenic agent</u> is multiplying in the host, or developing stages of the <u>pathogenic agent</u> are present in or on the host;
- B) viable <u>pathogenic agent</u> is **isolated from the proposed** <u>susceptible species</u>, or infectivity is demonstrated by way of
 transmission to naive individuals;
- **C) clinical or pathological changes** are associated with the *infection*;
- D) the **specific location** of the pathogen corresponds with the expected target tissues.

Outcomes of the assessment

The decision to list a species as susceptible (Aquatic Code):

✓ Transmission has been obtained naturally or by experimental procedures that mimic natural pathways for the <u>infection</u>

AND

- ✓ the identity of the <u>pathogenic agent</u> has been confirmed
 AND
- ✓ there is evidence of <u>infection</u> with the <u>pathogenic agent</u> in the suspect host species.
- ✓ To be included in the Aquatic Code

Species for which there is incomplete evidence for susceptibility (Aquatic Manual)

- The decision to list a species as should be based on a finding that the evidence is definite.
- However, where there is insufficient evidence to demonstrate susceptibility through the approach information will be included in the relevant <u>disease</u>-specific chapter in the <u>Aquatic</u> <u>Manual</u>.
- If there is insufficient evidence to demonstrate susceptibility of a species, the <u>Competent Authority</u> should assess the risk of spread of the pathogen under consideration prior to the implementation of import health measures.

For each disease list with fish species assessed for susceptibility created giving them status as 1 (Code) 2 (Manual) 3 Not aplicable (Neither Code nor Manual) 4 Non-susceptible (Manual)

			STAGE 1 - ro	ute of infectio	n	STAGE 2 - path		STAGE :	3 - Patho	ogy. A:	Agent re	plication. B	viable agent isolated fr	om host. C: Disease signs. D: pathogen located in target tissues		OVERALL
Genus		species	Route of transmission	F	² Outbre	pathogen id.	Comments	Α	В	С	D	Comments	Reference	Comments	оитсо	STATUS
Perca	Ρ	fluviatilis	Natural/E (non-inva	Natural	Yes	incomplete	first report	Υ	Υ	Υ	Υ		Langdon et al 1986; Lan	PCR not available		1
Perca	P	fluviatilis	E (non-invasive)	Natural	No	Yes	PCR only	Υ	Υ	Υ	Υ		Borzym et Maj-Paluch 2	PCR only - no post experimental sequencing, but isolate used for infec		1
Perca	Р	fluviatilis	E (non-invasive)	Natural	No	IFAT		Υ	Υ	Υ	Υ		Ariel et Bang Jensen 20	PCR not used, no post experimental sequencing, but isolate used for i		1
Oncorhynchus	0	mykiss	E (non-invasive)	Natural	No	Yes	PCR only	Υ	Υ	Υ	Υ		Borzym et Maj-Paluch 2	PCR only - no sequencing, no post experimental sequencing, but isolat		1
Oncorhynchus	0	mykiss	Natural/E (non-inva	Natural	Yes	incomplete	first report	Υ	Υ	Υ	Y		Langdon et al 1988; Lan	PCR not available		1
Oncorhynchus	0	mykiss	E (non-invasive)	Natural	No	IFAT		Υ	Υ	Υ	Υ		Ariel et Bang Jensen 20	PCR not used - no post experimental sequencing, but isolate used for i		1
Oncorhynchus	0	mykiss	Natural	Natural	Yes	ELISA		N	Υ	Υ	Υ		Whittington et al 1994	PCR not used		1
Sander	5	lucioperca											Bang Jensen et al 2011			
Cyprinus	С	carpio											Bang Jensen et al 2011			
Carassius	С	auratus											Bang Jensen et al 2011			
Macquaria	М	australasica	E (non-invasive)	Natural	No	incomplete	first report	Υ	Υ	Υ	Υ		Langdon 1989	PCR not available		2
Maccullochella	М	peeli	E (invasive)	Natural	No	incomplete	first report	Υ	Y	Υ	Υ		Langdon 1989	PCR not available		2
Bidyanus	В	bidyanus	E (non-invasive)	Natural	No	incomplete	first report	Υ	Υ	Υ	Υ		Langdon 1989	PCR not available		2
Galaxias	G	olidus	E (non-invasive)	Natural	No	incomplete	first report	Υ	Υ	Υ	Y		Langdon 1989	PCR not available		2
Gambusia	G	affinis	E (non-invasive)	Natural	No	incomplete	first report	Υ	Y	Υ	Y		Langdon 1989	PCR not available		2
Ameiurus	Α	melas	E (non-invasive)	Natural	No	IFAT		N	Υ	N	Υ	macroscop	Gobbo et al 2010	PCR not used		2
Esox	Ε	lucius	E (non-invasive)	Natural	No	IHC		Υ	Υ	Υ	Υ		Jensen et al 2009	PCR used for inoculum characterisation, isolate used was the same as		1
Salmo salar	5	salar	E (invasive)			incomplete	first report	nd	Y	Υ	N		Langdon et al. 1986		2b	2
Retropinna		semoni	E (non-invasive)					nd	nd	nd	nd		Langdon 1989			na
Carassius		auratus	E (non-invasive)/E (i					nd	nd	nd	nd		Langdon 1989			na
Magauria		novemaculeata	E (non-invasive)/E (i					nd	nd	nd	nd		Langdon 1989			na
Magauria		ambiqua	E (non-invasive)/E (i					nd	nd	nd	nd		Langdon 1989			na
Lates		calcarifer	E (non-invasive)/E (i					nd	nd	nd	nd		Langdon 1989			na
Capoeta		tetrazona	E (non-invasive)					nd	nd	nd	nd		Langdon 1989			na
Paratya		australiensis	E (non-invasive)					nd	nd	nd	nd		Langdon 1989			na
Daphnia		carinata	E (non-invasive)					nd	nd	nd	nd		Langdon 1989			na
Cherax	1	destructor	E (non-invasive)					nd	nd	nd	nd		Langdon 1989			na
Agraptocorixa		Sp.	E (non-invasive)					nd	nd	nd	nd		Langdon 1989			na
Bidyanus		bidvanus	(Becker et al 2013			
Craterocephalu		stercusmuscaru											Becker et al 2013			
Gambusia		holbrooki											Becker et al 2013			
Hypseleotris	Г	spp.											Becker et al 2013			
Maccullochella		macquariensis											Becker et al 2013			
Maccullochella	F	peelii peelii											Becker et al 2013			
WIGGEONOL/IE/IG	F	peeni peeni											Decker et al 2015			_

The OIE listed fish diseases assessed at present

✓ EHN

Article 1.3.1.

- EUS
- √ Gyrodactylus.sal
- ISA
- **✓** SAV
- **✓IHN**
- **✓** KHV
- **✓** RSBIV
- **✓** SVC
- VHS

The following diseases of fish are listed by the OIE:

- Epizootic haematopoietic necrosis disease
- Infection with Aphanomyces invadans (epizootic ulcerative syndrome)
- Infection with Gyrodactylus salaris
- Infection with HPR-deleted or HPR0 infectious salmon anaemia virus
- Infection with salmonid alphavirus
- Infectious haematopoietic necrosis
- Koi herpesvirus disease
- Red sea bream iridoviral disease
- Spring viraemia of carp
- Viral haemorrhagic septicaemia.

EFSA report on suscetible species

The EFSA Journal (2008) 808, 1-144

Aquatic species susceptible to diseases listed in Directive 2006/88/EC1

Scientific Opinion of the Panel on Animal Health and Welfare (AHAW)

(Question No EFSA-Q-2008-074)

Adopted on the 11th of September 2008

In conclusion:

- A number of changes are proposed concerning listing of fish species susceptible to the EU listed fish diseases
- The assessments shall be made based on scientific studies and peer reviewed papers
- The EURL alone cannot comply with all diseases and will call for an expert group meeting at DTU or in Brussels in order to provide sufficient scientific strength of the proposals to the Commission
- Proposal for Members of this group/volunteers? (big but interesting work)

Thank you for your attention