Deficiencies in the current assays for the detection and identification of DNA viruses of carp: an assay redesign and evaluation.

David Stone¹, Peng Jia² and Hong Liu²

¹Cefas Weymouth Laboratory, UK ²Shenzhen Exit & Entry Inspection and Quarantine Bureau, People's Republic of China.

Centre for Environment Fisheries & Aquaculture Science

World Class Science for the Marine and Freshwater Environment Cefas

Overview

BREXIT

- Cyprinivirus-specific primers
- Failures in CyHV-3 detection using the Gilad qPCR assay
- Design and initial evaluation of a CyHV-3 pol qPCR assay
- CEV
- Current PCR based assays
- Failures in the Cefas conventional PCR assay
- Design and initial evaluation of a modified nested PCR assay
- Work to be done

Advances in Virus Research Available online 29 April 2015

In Press, Corrected Proof - Note to users

Cyprinid Herpesvirus 3: An Archetype of Fish Alloherpesviruses

Maxime Boutier^{*}, Maygane Ronsmans^{*}, Krzysztof Rakus^{*}, Joanna Jazowiecka-Rakus^{*}, Catherine Vancsok^{*}, Léa Morvan^{*}, Ma. Michelle D. Peñaranda^{*}, David M. Stone[†], Keith Way[†], Steven J. van Beurden[‡], Andrew J. Davison[§], Alain Vanderplasschen^{*} [•]

- Large DNA virus (295 kbp genome) of the Alloherpesviridae family in the order Herpesvirales
- CyHV-3 (Koi herpesvirus KHV) is the type species of the *Cyprinivirus* genus -also contains Cyprinid herpesviruses 1 & 2 and Anguillid herpesvirus
- Disease affects Common carp (*Cyprinus carpio*), including ornamental koi carp and varieties and hybrids such as mirror and ghost carp. Goldfish (*Carassius auratus*) x common carp hybrids also have low susceptibility to CyHV-3 infection

Cyprinivirus- specific DNA polymerase primers

Nested conventional PCR assay based on CyHV 1-3 DNA polymerase sequences

- Analytical sensitivity of 1-10 copies/reaction (~DNA from 0.25mg tissue)
- Assay accredited to ISO 17025

Initially run in parallel to the TK primers recommended by the OIE. In the UK the assay was adopted as the primary assay for confirmation of disease outbreaks as it performed better in our hands

Herpesvirus diversity

N-J tree based on partial cyprinid herpesvirus DNA polymerase gene sequence (300nt) obtained from carp tissues using the CyHV pol generic primers

F

0.1

Centre for Environment Fisheries & Aquaculture

Science

CyHV-3 variants

Vol. 107: 113-120, 2013

doi: 10.3354/dao02666

N-J tree based on partial cyprinid herpesvirus DNA polymerase gene sequence obtained from carp tissues using the CyHV pol generic primers

Detection of novel strains of cyprinid herpesvirus closely related to koi herpesvirus

DISEASES OF AQUATIC ORGANISMS

Dis Aquat Org

Marc Y. Engelsma¹, Keith Way², Melanie J. Dodge², Michal Voorbergen-Laarman¹, Valentina Panzarin³, Miriam Abbadi³, Mansour El-Matbouli⁴, Helle Frank Skall⁵, Søren Kahns^{5,6}, David M. Stone^{2,*}

¹Central Veterinary Institute (CVI), part of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands ²Cefas, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK ³Istituto Zooprofillattico Sperimentale delle Venezie (IZSVe), Viale dell'Universita 10, 35020 Legnaro, Padova, Italy ⁴University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria ⁵National Veterinary Institute (DTU-Vel), Technical University of Denmark, Hangovej 2, 8200 Aarhus N, Denmark

⁶Present address: Danish Technological Institute, Kongsvang Allé 29, 8000 Aarhus C, Denmark

Published December 12

Significance of the findings

- The significance of the novel CyHV-3 strains for common carp is not fully understood
- Many of the CyHV-3 variants were detected in apparently healthy animals.

low-pathogenic strains of CyHV-3 that <u>do not</u> warrant control in the same way as conventional CyHV-3 isolates.

• In a few cases the animals exhibited signs usually attributed to a CyHV-3 infection

pathogenic strains of CyHV-3 that <u>do</u> warrant control.

KHV

All strains of CyHV-3 should to be treated as having the potential to cause disease.

CyHV-3 qPCR assay design

- Multiple alignment of CyHV-1-3 partial DNA polymerase sequences using Clustal W
- Design multiple primer and probe combinations
- Select the assay that performed well

CyHV-3 qPCR amplification curves using serially diluted plasmid and carp DNA extracts as a matrix

CyHV-3 qPCR standard curve

Gilad qPCR and CyHV-3 pol qPCR amplification curves using DNA extracted from tissue infected with a CyHV-3 variants

.

Science

Sample	Gilad et al qPCR	TK conventional PCR	KHV pol qPCR	CyHV pol conventional PCR
J177 4.1	-ve	-ve	+ve	+ve
J241 2.1	-ve	-ve	+ve	+ve
L191 1.3	-ve	-ve	+ve	+ve
M104 1.3	-ve	-ve	+ve	+ve
L147 2.1 CyHV-1	-ve	-ve	-ve	+ve
N092 1.2 CyHV-1	-ve	-ve	-ve	+ve
L119 4.1 CyHV-1	-ve	-ve	-ve	+ve
M119 2.1 CyHV-3	+ve	+ve	+ve	+ve
M112 4.3	-ve	-ve	-ve	+ve

Sample	Gilad et al qPCR	TK conventional PCR	KHV pol qPCR	CyHV pol conventional PCR
J177 4.1	-ve	-ve	+ve	+ve
J241 2.1	-ve	-ve	+ve	+ve
L191 1.3	-ve	-ve	+ve	+ve
M104 1.3	-ve	-ve	+ve	+ve
L147 2.1 CyHV-1	-ve	-ve	-ve	+ve
N092 1.2 CyHV-1	-ve	-ve	-ve	+ve
L119 4.1 CyHV-1	-ve	-ve	-ve	+ve
M119 2.1 CyHV-3	+ve	+ve	+ve	+ve
M112 4.3	-ve	-ve	-ve	+ve

Sample	Gilad et al qPCR	TK conventional PCR	KHV pol qPCR	CyHV pol conventional PCR
J177 4.1	-ve	-ve	+ve	+ve
J241 2.1	-ve	-ve	+ve	+ve
L191 1.3	-ve	-ve	+ve	+ve
M104 1.3	-ve	-ve	+ve	+ve
L147 2.1 CyHV-1	-ve	-ve	-ve	+ve
N092 1.2 CyHV-1	-ve	-ve	-ve	+ve
L119 4.1 CyHV-1	-ve	-ve	-ve	+ve
M119 2.1 CyHV-3	+ve	+ve	+ve	+ve
M112 4.3	-ve	-ve	-ve	+ve

Conclusions for the CyHV-3 assays

Vol. 126: 155-166, 2017 DISEASES OF AQUATIC ORGANISMS https://doi.org/10.3354/dao03164 Dis Aquat Org

Published October 18

REVIEW

Emergence of carp edema virus (CEV) and its significance to European common carp and koi Cyprinus carpio

K. Way^{1,*}, O. Haenen², D. Stone¹, M. Adamek³, S. M. Bergmann⁴, L. Bigarré⁵, N. Diserens⁶, M. El-Matbouli⁷, M. C. Gjessing⁸, V. Jung-Schroers³, E. Leguay⁹, M. Matras¹⁰, N. J. Olesen¹¹, V. Panzarin¹², V. Piačková¹³, A. Toffan¹², N. Vendramin¹¹, T. Veselý¹⁴, T. Waltzek¹⁵

¹Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, DT4 8UB, UK ²Wageningen Bioveterinary Research of Wageningen UR, 8219 PH, Lelystad, The Netherlands ³Fish Disease Research Unit, University of Veterinary Medicine, 30559 Hannover, Germany ⁴Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany ⁵ANSES, Fish Viral Pathology, 29280 Plouzané, France ⁶Centre for Fish and Wildlife Health, University of Bern, 3012 Bern, Switzerland ⁷Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria arian Vatarinary Institute 0106 Oclo

Large DNA virus. Genome ~ 460 kbp (Thomas Waltzek (personal communication)

The disease has been reported to generally occur naturally in koi at water temperatures between 15-25°C with a cumulative mortality that may reach 75-100% in juvenile koi, but outbreaks have also been reported to occur during periods of low water temperatures (6-10°C)

Design of a new assay prompted by CEV outbreak in common carp 2012

- Carp mortality in several ponds in London to the South of the river Thames.
- Initial confirmation of CEV in these cases was achieved by PCR using the primers described by Oyamatsu et al. (1997)
- No products in the 1st round PCR. Non-specific products of a similar size to the expected product in the 2nd round which made the interpretation of the assay difficult

Non-specific PCR results using the using the primers described by Oyamatsu et al. (1997)

Design of PCR primers based on the based on the CEV sequence obtained from T Miyazaki

Initial PCR results using the primers based on the CEV sequence obtained from T Miyazaki combined with R3 primer from Oyamatsu et al. (1997).

Detection of CEV in gills by PCR using the B/J and B int/J int primer sets

Detection of CEV-like sequences in carp tissue by nested PCR using CEV B/CEV J in the first round and CEV Bint/CEV Jint in the second round.

Taqman qPCR assay for CEV

Detection limit of 1-10 copies/reaction

Widely used as a primary screening tool for surveillance and disease confirm by conventional PCR and sequence analysis using the Cefas CEV B/J and Bint/Jint primer sets.

Neighbour-joining tree based on partial sequence (433nt) of the core protein P4a gene of CEV from 2009 – 2013

Centre for Environment Fisheries & Aquaculture Science

0.005

Could this disease be a major contributor to **Spring Carp Mortality Syndrome (SCMS)** – unexplained mortalities, reported to occur in carp fisheries since 1980s ?

Examination of the presence of CEV in SCMS samples

All of the CEV-like sequences generated from SCMS tissues samples from 2004-2006 were assigned to the lineage linked common carp.

- CEV specific real-time qPCR and conventional PCR
- Adopted internationally as the 'standard' for CEV surveillance and disease confirmation.

CEV_Japan	GAAGTCATTG	TCTTATCGAA	GACATTCATC	TTATTCCAAT	CATCAATCTG	AATTCCTTTC	CAGAACATAA	CATTTGCAAT
1-98			GA					
Q030		GA	GA			G		
M141			GA					

CEV Jint

CEV_Japan	TTTAACTTGC TC	TGGAATTG	TATCAACATG	TCCAATATCT	TTCTTTACTA	CGTAATTT <mark>GG</mark>	ATGAGGTAGT	ACTTTGCTA A
1-98			G.A				A	.TAG.A
Q030			G.A					
M141			G.A					

CEV J

CEV_Japan	CAAAGTCACA	ATAGTGAAGA	G TTGTCATTT	TAATTTGTTG	TAGTCCAATT	TCTGCAAATT	GATATATATC	AGGAATATCA
1-98	.GA	T	A			C.	GA	TCC
Q030		A			AT		G	
M141							G	

CEV_Japan	AATTTAACCA TATTTGCAA	A TGGATTTGCT GCTGC	GTG CTGCCATTAC	GTAATTAGAA TC	GCGAAGTT CAGGATCTCT
1-98	CT	GG. CAC	ATG	AGCG .TA	AAG TTAC
Q030		C	CTGCGA	A	A
M141	TGA				A

CEV_Japan	TGCTGCTGCT	GTTGCAACCA	TTTGAGAATG	AACCGAATCA	ACAAGTTGAT	ATGCTTTTGC	ATTTGCATCA	AAAGCAACAA
1-98	AAAAA	ACTT	C	T.C	T.AG.	A	GA	G.TTT.
Q030	.AA.	TT		G		A		T
M141				T		A		

Highly variable IGR sequence

Table 2 the results of nested PCR base on old primers and new primers

	Old primers		New primers	1	New primers 2	
Samples	1 st PCR (CEV B/J)	2 nd PCR (CEV Bint/Jint)	1 st PCR (CEV B/J2)	2 nd PCR (CEV Bint/Jint2)	1 st PCR (CEV B/J2)	2 nd PCR (CEV Bint/Jint3)
ZM8	-	-	+	+	+	+
3#	-	-	+	+	+	+
5#	-	-	-	-	-	-
3979	-	-	-	-	-	-
3800	-	-	-	+	-	+
3801	-	-	-	+	-	+

So what have we missed?

Thank You

Exploiting the increased discriminatory power of Variable Number Tandem Repeats (VNTRs)

The three complete CyHV-3 genomes aligned using Clustal W and the uninterrupted VNTRs were identified by visual examination

- 15 uninterrupted VNTRs displaying at least 4 repetitions.
- 11 with a repeat unit of 3 or more in length.
- 6 of the 11 alleles differed in repeat number between the CyHV-3 U and CyHV-3 I strains.

KHV virus	Repeat size	Start position	Repeat sequence
strain	(nucleotides)		
DQ657948.1	3	4810	(TGA) ₄
DQ177346.1		4798	(TGA) ₅
AP008984.1		4752	(TGA) ₄
DQ657948.1	9	11628	(AGTGAGCAG)₅
DQ177346.1		11619	(AGTGAGCAG) ₇
AP008984.1		11545	(AGTGAGCAG) ₄
DQ657948.1	3	15501	(TCA) ₅
DQ177346.1		15497	(TCA) ₅
AP008984.1		15455	(TCA) ₈
DQ657948.1	2	16100	(TG) ₄₆
DQ177346.1		16096	(IG) ₅₆
AP008984.1	0	16052	(IG) ₃₄
DQ657948.1	2	3/8/8	(GT) ₃₇
DQ177346.1		31920 27956	(GT) ₂₂
AP008984.1	10	00074	$(GI)_{39}$
DQ657948.1	12	90974	$(AACCACCGAGGA/T)_{18}$
A D00808/ 1		91007	$(AACCACCGACGAA(T))_{18}$
DO657049 1	6	122275	$(AACCACCGAGGA(T)_{37})$
DQ037946.1	0	133207	$(ACCCTC)_7$
AP008984 1		133358	(ACCCTC) ₈
DQ657948 1	2	177568	(GA) ₆₄
DQ177346.1	2	177605	(GA) ₄₇
AP008984.1		177510	(GA) ₄₀
DQ657948.1	3	188012	(TTC) ₂₂
DQ177346.1		187984	(TTC) ₂₈
AP008984.1		187881	(TTC) ₁₄
DQ657948.1	9	216450	(AGCAACAGC) ₉
DQ177346.1		216418	(AGCAACAGC) ₈
AP008984.1		216286	(AGCAACAGC) ₁₀
DQ657948.1	9	216553	(CTTCAGCAC) ₄
DQ177346.1		216513	(CTTCAGCAC) ₄
AP008984.1		216398	(CTTCAGCAC) ₁₈
DQ657948.1	3	277488	(TGA) ₄
DQ177346.1		277451	(TGA) ₅
AP008984.1		277589	(TGA) ₄
DQ657948.1	9	284305	(AGTGAGCAG)₅
DQ177346.1		284272	$(AGTGAGCAG)_7$
AP008984.1	0	284382	
DQ657948.1	3	288178	(TCA) ₅
DQ177346.1		200100	(TCA) ₅ (TCA)
AP006964.1	2	200292	
DQ057946.1	2	200770	(TG)
AP008984 1		288890	(TG) ₅₆
		200000	() () () () () () () () () ()

VNTR polymorphisms in the CyHV-3 genome

VNTR	Primer	Sequence	Repeat	Genome Location*	Allele no	No of Repeats
VNTR-	11700 For	CACATCATCAAGAACTTCAG	AGTGAGCAG	11628	4	1-6
11700	11700 Rev	TTGCAGTATTGGAGCACTC				
VNTR-	91700 For	GTATGGGTCTAGATAGAGAG	AACCACCGAGG(A/T)	90974	12	0-29
91700	91700 Rev	GAAGGACCTGACCAACTCAG	AG			
VNTR-	133920 For	CTCGCAGATCAGAGGTTCG	ACCCTC	133275	6	5-10
133920	133920 Rev	GACCTACCTACCTCTACAC				
VNTR-	188700 For	CGGAATCCACCACGTACAG	ТТС	188012	14	13-26
188700	188700 Rev	TGAAATCCATCACCTGCGAG				

VNTR profiles for CyHV-3 detected in the UK

- Approx. 10% of the total number of samples analysed to date
- A total of 75 distinct VNTR profiles were observed for the CyHV-3 detected in the UK between 2003 and 2016, suggesting large numbers of independent introductions
- Highlights the potential for even greater genetic diversity of the CyHV-3 strains circulating globally.

Stability of the VNTR profiles

- The same VNTR profile was observed in all viruses identified during a single disease episode on a fishery site indicating that they stable in the short term and represent suitable markers for epidemiological studies and outbreak tracing.
- Research undertaken at Cefas has demonstrated this experimentally. Virus was reactivated by stressing fish that had survived a KHVD outbreak three years earlier, and the infection was transmitted to naïve cohabiting fish. The virus detected in the stressed animals and that transmitted to the naïve fish was identical to those of the initial outbreak virus

The same VNTR profile was observed in viruses isolated from a fishery site after long periods without clinical disease indicating that the virus can remain dormant for several years, and raises concerns that the virus may be more widespread than originally thought.

	9			24
J375 (2006)	R135 (2013)	R136 (2013)	S118 (2014)	D182 2.4 (2001)
5	5	5	5	5
25	25	25	18	18
5	5	5	7	7
14	14	14	18	18
Lav	ender Hall - reoc	curance	linked	13 year gap

The same VNTR profile was observed on several sites across the country either in the same year or within a year of each other suggesting spread or infected fish from the same supplier

17							
J286 1.1 (2006)	H329 1.1 (2005)	H361 2.1 (2005)	H361 2.2 (2005)	H361 2.3 (2005)			
5	5	5	5	5			
19	19	19	19	19			
7	7	7	7	7			
13	13	13	13	13			
Linked?							

The majority of the VNYR profiles were unique and found on a single site only suggesting multiple independent introductions.

42	2 43	44	45	46	47
L151 (2008)	L160 (2008)	DQ177346.1	N099 (2010)	N100 (2010)	P123 1.1 (2011)
5	5	7	5	5	5
18	18	18	18	18	18
9	8	8	7	7	7
19	21	28	19	20	30

KHV specific VNTRs identified in the positive samples from 5 disease outbreaks in Essex in 2014.

		Sample						
		S106 Pea Lane	S118 Great Oakley	S124 Valence	S133 Slough House	S134 Puddledock		
	11700	18	18	18	18	18		
VNTR	91700	5	5	5	5	5		
	133920	22	18	24	22	26		
	188700	9	7	9	7	10		

KHV specific VNTRs identified in the positive samples from disease outbreaks in Essex in 2014.

		Sample					
		S106 Pea Lane	S118 Great Oakley	S124 Valence	S133 Slough House	S134 Puddledock	
VNTR	11700	18	18	18	18	18	
	91700	5	5	5	5	5	
	133920	22	18	24	22	26	
	188700	9	7	9	7	10	

KHV specific VNTRs identified in the positive samples from disease outbreaks in Essex in 2014.

		Sample					
		S106 Pea Lane	S118 Great Oakley	S124 Valence	S133 Slough House	S134 Puddledock	
VNTR	11700	18	18	18	18	18	
	91700	5	5	5	5	5	
	133920	22	18	24	22	26	
	188700	9	7	9	7	10	

Further work

Industrial placement student for 2018/19 looking at the suitability of the CyHV pol PCR assay to demonstrate freedom from infection with CvHV-3.

Design and evaluation of a new real-time PCR assay to capture <u>all</u> CyHV-3 including the CyHV-3 variants

Analysis of the VNTR regions for the more recent CyHV-3 samples to identify links between outbreaks.

Molecular Epidemiology of Herpes Viruses of Fish and Shellfish in the UK.

David Stone, Melanie Dodge, Paul Martin, Gareth Wood, Jackie Savage Lex Hughes, Chris Pond, Jason Mewett, Nick Stinton and Keith Way

Cefas Weymouth Laboratory

World Class Science for the Marine and Freshwater Environment

