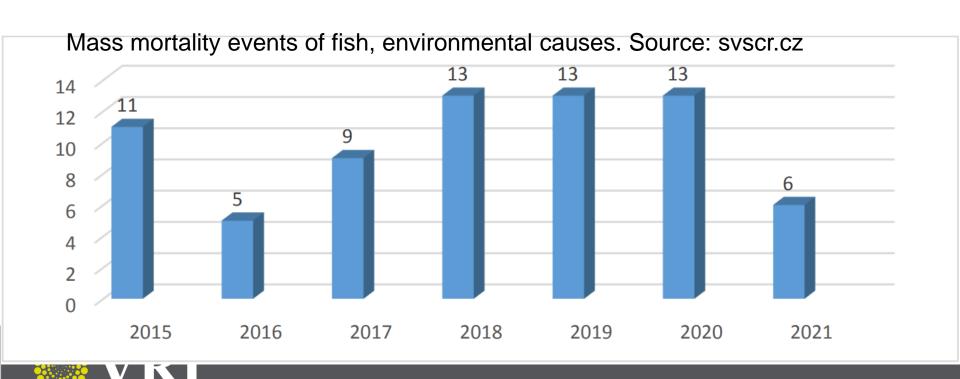
Health status of farmed cyprinids in the Czech Republic

L'ubomír PojezdalVeterinary Research Institute, Brno

30. 5. 2022 Kgs. Lyngby

Cyprinids in Czechia

20 000 tones annually


90 % of local aquaculture

common-grass-bighead-carp

Environmental* factors

- rainfall down, temperatures up
- eutrophisation
- O₂ depletion
- *industrial accidents

Bacterial diseases

- Aeromonas hydrophila
- ATB resistance
- oxytetracycline, florfenicol amoxycillin...

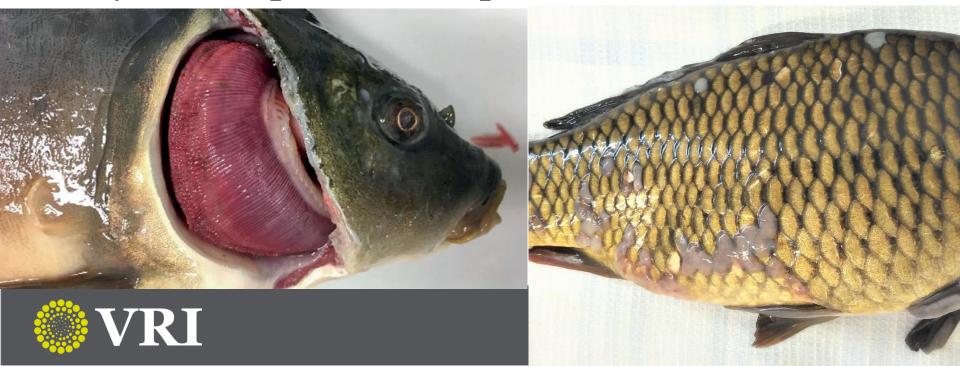
Parasites

- surveillance was done along with KHV in 2018
- 5 fish per location, 100+ locations per year
- summer months
- wide spectrum of genera and species
- mostly low abundance
- mostly low impact

Parazit	Počet nálezů z celkem 844 vzorků	%	Intenzita 1*	Intenzita 2*	Intenzita 3*
Apiosoma	23	3,7	13	3	7
Argulus	37	5,8	26	11	0
Atractolytocestus	52	8,1	35	10	7
Dactylogyrus	92	14,4	79	13	0
Eudiplozoon	25	3,9	24	1	0
Chilodonella	1	0,2	1	0	0
Gyrodactylus	92	14,4	64	20	8
Ichthyophtirius	58	9,4	52	6	0
Myxobolus	4	0,6	1	2	1
Sphaerospora	3	0,5	0	0	3
Trichodina sp.	152	23,7	110	24	18
Trichodinella	26	4,1	21	3	2
Trypanoplazma	21	3,3	15	4	2
Cappilaria	3	0,5	3	0	0
Khawia	9	1,4	6	3	0
Piscicola	9	1,4	9	0	0
Caryophyleus sp.	1	0,2	1	0	0
Philometroides	4	0,6	4	0	0
Proteocephalus	1	0,2	1	0	0
Trypanozoma	11	1,7	6	0	5
Hemiclepsis	4	0,6	4	0	0
Ergasilus	1	0,2	1	0	0
Tetraonchus	2	0,3	2	0	0
Ichthyobodo	1	0,2	1	0	0
Lernaea	5	0,8	5	0	0
Aspharyngostrigea	1	0,2	0	0	1

SVSCr.CZ

Parasites 2

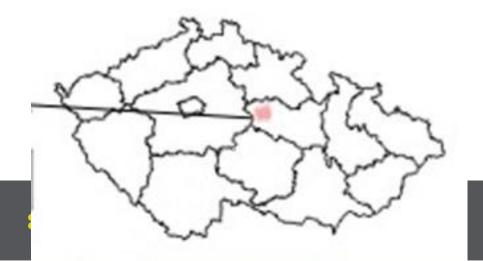

Diplostomum spathaceum metacercaria

Grass carp juveniles – eye lens

Viral pathogens

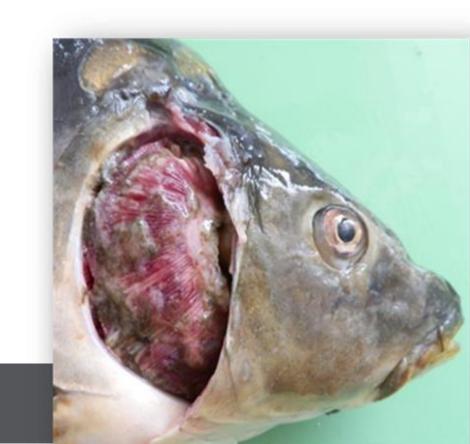
- CEV cases down but still important
- SVCV low impact
- CyHV-1 present, local importance
- CyHV-2 prussian carp mortalities

KHV


- end of active surveillance
- 6 outbreaks in 2021

SVSCr.CZ

KHV – Pardubice region 2019


- increase of cases
- limited geographic area
- 3 years
- 19 ponds
- 263 tonnes

Rok	Počet vyšetřených	Počet
	hospodářství	ohnisek
	v rámci monitoringu	
2009	190	5
2010	184	1
2011	101	1
2012	95	0
2013	93	0
2014	104	0
2015	102	0
2016	97	2
2017	99	2
2018	103	2
2019	107	11
2020	105	4
2021	94	6

Conventional epidemiology

- movement of fish trade, winter storage
- fishing equipment
- waterways
- predatory birds?
- unregistered ponds?

Pardubice Region

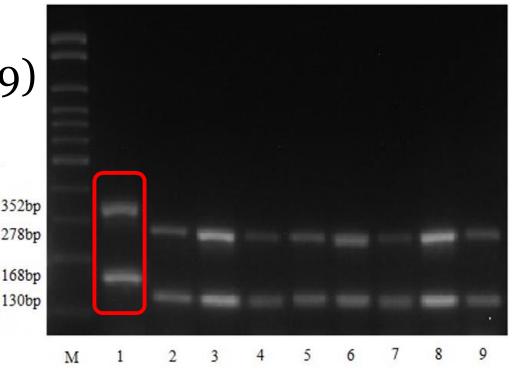
2017

• introduction?

2018

• 2 sites

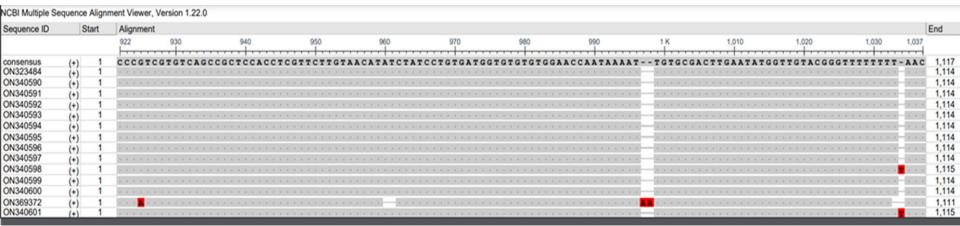
• 6 sites – 1 repeated


• 4 sites – new, no connection

1 koi pond

Virus characterisation: Asian/European

- Duplex PCR
- Bigarré et al. (2009)
 - **□1** CyHV3-J
 - **□2-9** CyHV3-U/I


Molecular epidemiology

• PCR + Sanger sequencing

• SphI-5 610 bp - too conservative

• 9/5 661 bp - too conservative

• TK 1001 bp - valuable information

TK gene analysis - conclusions

- Isolates from the Pardubice region identical for 2018 and 2019 = spread and re-infection
- •All 4 isolates from 2020 were different no connection to 2019 epidemiologically nor moleculary
- isolate from koi carp confirmed Asian lineage

Conclusions

• KHV still important – national legislation

• end of active surveillance – KHV, CEV, (parasites)

reliance on reports from farmers

increased impact of climate change

ATB resistance present/rising

Special thanks to:

Kateřina Mikulášková Zuzana Úlehlová Eliška Zusková Veronika Piačková Miroslava Palíková

Czech State Veterinary Administration

This study was supported by the Ministry of Agriculture of the Czech Republic MZE-RO0518 and the project PROFISH CZ.02.1.01/0.0/0.0/16_019/0000869 financed by ERDF in the operational programme VVV MŠMT.

pojezdal@vri.cz